【论文】解读A time-dependent shared autonomous vehicle system design problem

解读A time-dependent shared autonomous vehicle system design problem

作者:Yao Lia, Jiancheng Long , Miao Yu

摘要

共享自动驾驶汽车(SAV)(shared autonomous vehicle)的出现为时尚的拼车模式提供了新的机遇和挑战。本研究提出了一个与时间相关的SAV系统设计问题,通过联合优化车队规模(jointly optimizing fleet size)、停车基础设施部署(parking infrastructure)和系统的日常运行(daily operation of the system),进行长期基础设施规划。采用以每日系统总成本(TDSC)(total daily system cost)为基础的动态系统优化(DS))原则(dynamic system optimum principle)来制定SAV系统的日常运行,即用户的出发时间选择系统最优路径选择。通过引入路段传输模型(LTM)(link transmission model)作为交通流模型,将SAV系统的日运行问题(DOP)(daily operation problem)表述为线性规划(linear programming)问题。此外,时间相关的SAV系统设计问题被公式化为混合整数线性规划(MILP)(mixed integer linear programming)问题。所提出的MILP问题的线性规划松弛可以提供一个紧的下界,并且开发了一个潜水启发式算法来解决所提出的MILP问题。最后,通过数值例子说明了模型的性质和算法的有效性。

1. Introduction

自动车辆(AVs)将彻底改变交通方式。AVs最激动人心的应用之一是单向拼车服务(one-way car-sharing service),该服务已由Car2Go和Lyft等多家公司提供。与人类驾驶的传统拼车相比,共享自动车辆(SaV)有几个优势:(1)SaV可以自动驾驶到任何地方。对某些站点积累的车辆进行重新定位的问题可以从本质上解决,这是传统的由人类驾驶的单向拼车所面临的主要障碍之一(Nourinejad等人,2015)。(2)SaV可以持续工作,无缝完成旅行者的请求。与传统的拼车相比,需要更小的车队规模和更少的停车需求来满足不平衡的出行需求(张等,2015;张和Guhathakurta,2017)。(3)SaV可以在目的地让旅客下车后自动驾驶到停车地点,这解决了最后一英里的问题。此外,通过将停车设施设置在适当的位置,如远离住宅区或中央商务区,SaV可以帮助缓解当前的停车拥堵,并降低人口稠密地区的停车成本。

由于节能汽车为传统的汽车共享带来了创新性的变化,政府将非常有兴趣探索设计SAV系统以满足日常出行需求的策略。设计SAV系统时,需要考虑的关键因素包括车队规模、停车基础设施部署和日常运营。现有的研究表明,一个SAV可以在保持合理服务水平的同时,替换11辆传统的人力车辆(Fagnant和Kockelman,2014)。尽管庞大的车队规模有助于为旅客保持高水平的服务,如更少的等待时间、拥堵成本和延误成本,但购买车辆和建造停车场的成本是巨大的。车队规模小,反之亦然,可能会增加旅客的等待时间,从而导致服务水平低。因此,SAV系统应保持合理的车队规模。而且停车场部署是另一个需要考虑的因素(张等,2015;陈等,2016)。系统中的所有sav应提供停车位,用于充电、维护等。没有必要在旅行者的出发地或目的地附近为sav设置停车场,因为那里的土地成本可能很高。停车位置的选择应在停车场建设成本和出行者可及性之间取得平衡。在日常运营方面,SAV系统会根据旅客的期望时间窗口安排自助服务车接送旅客,并为其安排路线。鉴于上述情况,政府应共同确定车队规模、停车基础设施部署和日常运营,以实现SAV系统设计的协同效应。

在工程实践方面,由于出行需求随时间变化,需要考虑SAV系统的时变设计。此外,与其他交通基础设施类似(司徒和罗,2008),SAV系统的设计是一个长期的过程,包括一套资本投资,车队规模,以及部署和建设停车场。此外,SAV系统可能会使用很长一段时间。SAV系统的运行成本将逐年增加,系统性能应根据长期情况进行评估。因此,有必要将时间维度纳入SAV系统,以更好地确定SAV车队管理、停车基础设施部署和长期运营安排的时间相关计划。

考虑到这些因素,本研究通过联合确定车队规模、停车基础设施部署和系统的日常运行,提出了一个与时间相关的SAV系统设计。SAV系统设计问题在以前的文献中已有研究,主要🐸集中在舰队规模的确定上(fleet size)(Vosooghi等人,2019;Pinto等人,2020),🐸停车/收费基础设施部署(刘等人,2019;雅各布奇等人,2019年;Vosooghi等人,2020年)和🐸船队运营战略(Masoud和Jayakrishnan,2017年;Hyland和Mahmassani,2018;刘等,2019)。这些研究大多研究静态SAV系统设计问题,没有考虑长期出行需求的时变特性。本研究旨在通过同时整合车队规模、停车基础设施部署和日常运营,开发一个与时间相关的SAV系统,该系统可通过相应的实时日常运营解决SAV系统的长期设计问题。

SAV系统设计问题属于一类更广泛的混合网络设计问题(mixed network design problem),可以表述为模拟问题(如Boyac等,2017;张等,2020)或一个优化问题(如乔治和夏,2011;Brandst atter等人,2017年;刘、王,2017)。基于模拟的研究侧重于不同可行方案的评估,但获得的解决方案不一定是最佳的。目前,👍大量的SAV研究(例如,法南特和科克曼,2014年,2018年;张等,2015;陈等,2016;Levin等人,2017年;H orl等人,2019年;Vosooghi等人,2019年;刘等人(2019年)采用了基于仿真的模型,因为它们提供了很高的灵活性来整合复杂的模型设置,例如车队管理(例如,Fagnant和Kockelman,2014年)、停车位置部署(例如,Fagnant和Kockelman,2013年;张等,2015;陈等,2016;Loeb等人,2018年)、拼车选项(如Fagnant和Kockelman,2018年)和公共交通一体化(如沈等人,2018年)。与基于模拟的研究相比,👍基于优化的方法更加透明和易于处理,具有明确定义的目标函数和约束。优化模型总是被公式化为混合整数规划(MIP)问题(例如,Bruglieri等人,2014;Boyac等人,2015年;Brandst atter等,2017)或双层优化问题(何等,2015;刘、王,2017)和精确算法求解(Boccia等,2018;华等,2019)或启发式算法(张等,2017;谢等,2018;王等,2018;Schwerdfeger和Boysen,2020)。常用的算法包括分支切割算法(如Boccia等,2018)和分解算法(如华等,2019;alk和Fortz,2019年)。这些精确算法的效率很大程度上取决于子问题(即线性规划问题)的复杂性。由于由此产生的线性规划子问题在本质上是复杂的,并且有几个基于交通流的约束,因此迭代地解决它们将是耗时的。因此,启发式算法更适合解决这些优化模型。

在SAV系统设计问题中,交通分配模型通常用于确定车辆流如何在网络中传播。之前的研究工作广泛采用了两类模型:🔥静态交通分配模型(Riemann等人,2015;陈等,2017;王等,2019)和🔥动态交通分配模型(莱文和博伊尔斯,2016;田等,2019;莱文,2017;Levin等人,2019年)。与静态交通分配模型相比,动态交通分配模型能够更好地捕捉出行需求的时变特征。由于SAVs总是由一个中央计划者操作和协调,动态系统优化(DSO)通常被采用作为SAV系统的操作规则(例如,莱文,2017;Levin等人,2019年)。DSO在网络规划和交通政策领域的研究由来已久,它可以洞察交通系统的最优性能,并进一步为控制和管理动态交通网络提供基准(马等人,2014)。莱文(2017)首次提出了SAV系统的最优路径选择问题的线性规划公式。链路传输模型(LTM)用于捕捉道路拥堵。在接下来的研究中,莱文等人(2019年)模拟了一个将高级智能交通系统与公共交通系统相结合的动态路径选择问题,并利用LTM将其表述为线性规划问题。由于任何预定义的发车间隔(即需求间隔)可能无法通过交通流模型实现,因此发车时间的选择必须纳入到决策支持系统模型中(马等人,2014年)。

鉴于上述情况,本研究通过联合确定车队规模、停车基础设施部署和系统的日常运行,提出了一个与时间相关的SAV系统设计。为此,SAV系统的日常运作,包括💪用户的出发时间选择和💪SAVs的路线选择,均采用直接系统运作原则。使用LTM(链路传输模型)将SAV系统的日常运行问题公式化为线性规划问题。此外,与时间相关的SAV系统设计问题被公式化为混合整数线性规划(MILP)问题,以确定车队规模、停车基础设施部署以及日常运营。通过初步分析,发现线性规划松弛(LP relaxation)可以为提出的的MILP(混合整数线性规划)提供一个紧的下界。通过利用这一优势,潜水启发式算法(diving heuristic algorithm)被开发来解决所提出的MILP问题。通过数值例子讨论了算法性能和模型性质。

本研究的主要贡献总结如下:

  1. 为SAV系统提出了一个DOP(动态优化问题)。与莱文(2017)提出的决策支持系统路线选择问题不同,决策支持系统是一个动态系统最优同时路线和出发时间选择问题。通过使用LTM,SAV系统的运行费用被公式化为线性规划问题,该问题除了在莱文(2017)中占用的系统运行费用和总系统运行时间(TSTT)之外,还将空系统运行费用纳入目标函数。因此,所提出的模型能够降低由于出行需求不平衡而导致的SAV重新定位的成本。此外,不同于莱文(2017)提出的动态随机存取存储器模型,车辆停车约束被纳入了动态随机存取存储器模型。
  2. 提出了一个时间相关的SAV系统设计问题,以捕捉动态旅行需求。据我们所知,我们率先通过联合优化车队规模、停车基础设施部署和长期基础设施规划系统的日常运行来解决与时间相关的SAV系统设计问题。
  3. 本研究将时变SAV系统设计问题公式化为MILP问题。通过发现线性规划松弛可以为自身提供一个紧的下界,开发了一个潜水启发式算法来解决所提出的MILP问题。所提出的求解算法能够及时找到近似最优解
  4. 我们说明了模型的性质。特别是,提议的SAV系统在车队规模和停车位节省方面优于非共享无人驾驶飞行器系统,总系统旅行成本增加有限(TSTC),尤其是在旅行需求水平较高时。就贴现的总系统成本而言,提议的SAV系统优于没有长期规划的对应系统(DTSC),特别是当规划年数增加时。

本文的其余部分组织如下。第2节描述了SAV系统的DOP,并将该问题表述为一个DSO-SRDTC问题。第三节将时变SAV系统设计问题表述为MILP问题,并提出了一种潜水启发式算法来解决所提出的MILP问题。第四节给出了数值例子来说明所提出算法的性能和所提出模型的性质。第五部分总结了整个工作。

2. The daily operation problem of a SAV system

2.1. Notations
在莱文(2017)、马等人(2017)以及李和廖(2020)之后,我们假设所有旅行者都是通过道路网络中的SAVs来完成旅行的。SAV系统有一个平台,收集旅行者的旅行信息,安排旅行者的旅行和SaV的使用。该平台在系统优化方面运行SAV系统,所有旅行者遵循平台的安排(莱文,2017;Ma等人,2017年)。对于某一天,有一队sav最初停在不同的停车场。旅行者将他们的旅行信息发送到平台,其中包括:(1)出发地(2)目的地(3)期望的到达时间窗口。根据旅行者的旅行请求,该平台必须决定旅行者的出发时间和车辆路线,并安排SaV以最低成本接送旅行者。让旅客下车后,这些SaV有两种情况:(1)接旅客或(2)自己开车去停车场停车一天结束时,所有SaV必须在完成所有旅行者的旅行后返回停车场

所研究的道路网络可以表示为全连通图 G = ( N , A ) G = (N,A) G=(NA),其中 N N N为节点集, A A A为链路集。节点集N可以划分为 N = R ∪ S ∪ O N = R ∪ S ∪ O N=RSO,其中 R R R是与旅行者出发地相关联的节点子集, S S S是与旅行者目的地相关联的节点子集, O O O是一般节点子集,既不是出发地也不是目的地。设 A ( i ) A(i) A(i) B ( i ) B(i) B(i)分别是从节点 i i i开始和结束的链接集。设 f f f为SAV系统的舰队规模。设 p i p_i pi为节点 i ∈ N i ∈ N iN处的停车位数,设 d r s d^s_ r drs为出发地 r ∈ R r ∈ R rR和目的地 s ∈ S s ∈ S sS之间的出行需求,给定车队规模 f f f、停车位向量 p = [ p i , i ∈ N ] p = [p_i,i ∈ N] p=[pi,iN]和出行需求向量 d = [ d r s , ∀ r ∈ R , s ∈ S ] d =[d^s_ r,∀r ∈ R,s ∈ S] d=[drs,rRsS]的信息,我们可以将SAV系统的DOP公式化为DSO-SRDTC问题。我们将一天中感兴趣的时间段离散成一组有限的时间间隔 K = { 1 , 2 , ⋯ K ˉ } K =\{1,2,⋯\bar{K} \} K={1,2,Kˉ}。设 δ \delta δ为区间长度。采用以下符号来制定DOP。

变量含义
Q i ( k ) Q_i(k) Qi(k)在间隔 k k k结束时停在节点 i i i的车辆数
U a ( k ) U_a(k) Ua(k)在间隔 k k k结束时进入link a a a的累积车辆流量
V a ( k ) V_a(k) Va(k)在间隔 k k k结束时离开link a a a的累积车辆流量
U a s ( k ) U^s_a(k) Uas(k)在间隔 k k k结束时进入link a a a到达目的地 s s s的累积占用的车辆流量
V a s ( k ) V^s_a(k) Vas(k)在间隔 k k k结束时离开link a a a到达目的地 s s s的累积占用车辆流量
U − a ( k ) U_{-a}(k) Ua(k)在间隔 k k k结束时,进入link a a a的累积空车流量
V − a ( k ) V_{-a}(k) Va(k)在间隔 k k k结束时,离开link a a a的累积空车流量
参数含义
τ a \tau_a τa在link a a a上的车辆的自由流量行程时间
l a l_a la在link a a a的出口到入口的反向激波传播需要的行程时间
L a L_a Lalink a a a的长度
ρ j a m \rho_{jam} ρjamjam 密度
C a ( k ) C_a(k) Ca(k)在间隔 k k k结束时link a a a上的流出容量
B a ( k ) B_a(k) Ba(k)在间隔 k k k结束时link a a a上流入容量
变量向量表达
Q [ Q i ( k ) , i ∈ N , k ∈ K ] [Q_i(k),i\in N,k\in K] [Qi(k),iN,kK]
U [ U a s ( k ) , a ∈ A , s ∈ S , k ∈ K ] [U^s_a(k),a\in A,s\in S,k\in K] [Uas(k),aA,sS,kK]
V [ V a s ( k ) , a ∈ A , s ∈ S , k ∈ K ] [V_a^s(k),a\in A,s\in S,k\in K] [Vas(k),aA,sS,kK]
U- [ U − a ( k ) , a ∈ A , k ∈ K ] [U_{-a}(k),a\in A,k\in K] [Ua(k),aA,kK]
V- [ v − a ( k ) , a ∈ A , k ∈ K ] [v_{-a}(k),a\in A,k\in K] [va(k),aA,kK]
xx=[Q,U,V,U-,V-]

2.2 The feasible solution set of the DOP

本文将LTM作为其交通流模型纳入DOP。决策点的可行解集由基于LTM的流量约束、出行需求满足约束、每个节点的节约约束、停车约束和定义约束组成。基于LTM的流定义了沿着链路的车辆传播规则。旅行需求满足约束确保所有的旅行者都由SAV在时间范围内运送到目的地。守恒约束保证了在一个间隔进入一个节点的所有车辆必须等于离开一个节点的流量以及在该间隔停车的车辆。详细的约束描述如下。

根据纽厄尔(1993)的简化理论,link a ∈ A a\in A aA输送流量(sending flow)同时受到link的上游端的边界条件和link的流出容量 C a ( k ) C_a(k) Ca(k)的约束。因此,在时间间隔k期间,link a a a的输送流量(sending flow)可以用数学方法表示如下:
S a ( k ) = min ⁡ { U a ( k − τ a ) − V a ( k − 1 ) , C a ( k ) } , ∀ a ∈ A , k ∈ K (1) S_a(k)=\min\{U_a(k-\tau_a)-V_a(k-1),C_a(k)\},\quad\forall a\in A,k\in K\tag{1} Sa(k)=min{Ua(kτa)Va(k1),Ca(k)},aA,kK(1)

  • where τ a = L a / V a \tau_a=L_a/V_a τa=La/Va
  • τ a \tau_a τa:在link a a a上的车辆的自由流量行程时间
  • U a ( k − τ a ) U_a(k-\tau_a) Ua(kτa): k − τ a k-\tau_a kτa可以理解为在间隔k内在link a a a上不自由流动的时间;在这个时间上的累积车辆流量。
  • V a ( k − 1 ) V_a(k-1) Va(k1):在上一个间隔 k − 1 k-1 k1结束时在link a a a离开的累积车辆流量。
  • C a ( k ) C_a(k) Ca(k):在间隔 k k k结束时link a a a上的流出容量
    在这里插入图片描述

此外,link a ∈ A a \in A aA接收流量(receiving flow)必须受到链路下游端的边界条件和链路的流入容量 B a ( k ) B_a(k) Ba(k)的约束,可表示如下:
R a ( k ) = m i n { V a ( k − l a ) + L a ρ j a m − U a ( k − 1 ) , B a ( k ) } , ∀ a ∈ A , k ∈ K (2) R_a(k)=min\{V_a(k-l_a)+L_a\rho_{jam}-U_a(k-1),B_a(k)\},\quad\forall a\in A,k\in K\tag{2} Ra(k)=min{Va(kla)+LaρjamUa(k1),Ba(k)},aA,kK(2)

  • where l a = L a / w a l_a=L_a/w_a la=La/wa
  • l a l_a la:在link a a a的出口到入口的反向激波传播需要的行程时间;(猜测理解一些车辆进行掉头没有车辆流出的时间段)
    在这里插入图片描述
  • V a ( k − l a ) V_a(k-l_a) Va(kla): k − l a k-l_a kla表示在间隔 k k k去掉因掉头没有车辆流出的时间段;在这个时间段内流出的累积车辆数。
  • L a ρ j a m L_a\rho_{jam} Laρjam:可以理解为道路上正存在的车辆
  • U a ( k − 1 ) U_a(k-1) Ua(k1):表示为前一个间隔 k − 1 k-1 k1结束时流入的累积车辆。
  • min的左侧:当前link上存在的车辆—(k-1间隔结束流入的累积车辆—正常流出的时候的流出的累积车辆)
  • min的右侧:表明link上的最大接受容量

对于每一个link,间隔时间段内的流入和流出应受其发送和接收流量的限制。因此,我们同时有
V a ( k ) − V a ( k − 1 ) ≤ S a ( k ) , ∀ a ∈ A , k ∈ K (3) V_a(k)-V_a(k-1)\leq S_a(k),\quad \forall a\in A,k\in K\tag{3} Va(k)Va(k1)Sa(k),aA,kK(3)
U a ( k ) − U a ( k − 1 ) ≤ R a ( k ) , ∀ a ∈ A , k ∈ K (4) U_a(k)-U_a(k-1)\leq R_a(k),\quad \forall a\in A,k\in K\tag{4} Ua(k)Ua(k1)Ra(k),aA,kK(4)
将公式(1)和(2)带入不等式(3)和(4),我们可以获得基于LTM的车流约束,作为下面的不等式系统:
{ V a ( k ) ≤ U a ( k − τ a ) , V a ( k ) − V a ( k − 1 ) ≤ C a ( k ) , U a ( k ) ≤ V a ( k − l a ) + L a ρ j a m , U a ( k ) − U a ( k − 1 ) ≤ B a ( k ) , ∀ a ∈ A , k ∈ K (5) \begin{cases} V_a(k)\leq U_a(k-\tau_a),\\ V_a(k)-V_a(k-1)\leq C_a(k),\\U_a(k)\leq V_a(k-l_a)+L_a \rho_{jam},\\ U_a(k)-U_a(k-1)\leq B_a(k), \end{cases}\quad \forall a\in A ,k\in K \tag{5} Va(k)Ua(kτa),Va(k)Va(k1)Ca(k),Ua(k)Va(kla)+Laρjam,Ua(k)Ua(k1)Ba(k),aA,kK(5)

————————-
根据定义,累计车辆流量可以按车辆类型(即已占用或空载车辆)和目的地分类。因此,我们有
U a ( k ) = ∑ s ∈ S U a s ( k ) + U − a ( k ) , ∀ a ∈ A , k ∈ K (6) U_a(k)=\sum_{s\in S}U^s_a(k)+U_{-a}(k),\quad \forall a\in A,k\in K\tag{6} Ua(k)=sSUas(k)+Ua(k),aA,kK(6)
V a ( k ) = ∑ s ∈ S V a s ( k ) + V − a ( k ) , ∀ a ∈ A , k ∈ K (7) V_a(k)=\sum_{s\in S}V^s_a(k)+V_{-a}(k),\quad \forall a\in A,k\in K\tag{7} Va(k)=sSVas(k)+Va(k),aA,kK(7)
将公式(6)和(7)带入不等式组(5),我们有
{ ∑ s ∈ S V a s + V − a ( k ) ≤ ∑ s ∈ S U a s ( k − τ a ) + U − a ( k − τ a ) , ∑ s ∈ S V a s ( k ) + V − a ( k ) − ∑ s ∈ S ( k − 1 ) − V − a ( k − 1 ) ≤ C a ( k ) , ∑ s ∈ S U a s ( k ) + U − a ( k ) ≤ ∑ s ∈ S V a s ( k − l a ) + L a ρ j a m , ∑ s ∈ S U a s ( k ) + U − a ( k ) − ∑ s ∈ S U a s ( k − 1 ) − U − a ( k − 1 ) ≤ B a ( k ) , ∀ a ∈ A , k ∈ K (8) \begin{cases}\sum_{s\in S}V_a^s+V_{-a}(k)\leq \sum_{s\in S}U_a^s(k-\tau_a)+U_{-a}(k-\tau_a),\\ \sum_{s\in S}V_a^s(k)+V_{-a}(k) -\sum_{s\in S}(k-1)-V_{-a}(k-1)\leq C_a(k),\\ \sum_{s\in S}U_a^s(k)+U_{-a}(k)\leq \sum_{s\in S}V^s_a(k-l_a)+L_a\rho_{jam},\\ \sum_{s\in S}U_a^s(k)+U_{-a}(k)-\sum_{s\in S}U_a^s(k-1)-U_{-a}(k-1)\leq B_a(k) \end{cases},\quad \forall a\in A,k\in K\tag{8} sSVas+Va(k)sSUas(kτa)+Ua(kτa),sSVas(k)+Va(k)sS(k1)Va(k1)Ca(k),sSUas(k)+Ua(k)sSVas(kla)+Laρjam,sSUas(k)+Ua(k)sSUas(k1)Ua(k1)Ba(k),aA,kK(8)

按目的地和车辆类型分类的累计路段流出量也应受到路段上游端边界条件的约束,因此我们有
V a s ( k ) ≤ U a s ( k − τ a ) , ∀ s ∈ S , a ∈ A , k ∈ K (9) V_a^s(k)\leq U_a^s(k-\tau_a),\forall s\in S,a\in A,k\in K \tag{9} Vas(k)Uas(kτa),sS,aA,kK(9)
V − a ( k ) ≤ U − a ( k − τ a ) , ∀ a ∈ A , k ∈ K (10) V_{-a}(k)\leq U_{-a}(k-\tau_a),\forall a\in A,k\in K\tag{10} Va(k)Ua(kτa),aA,kK(10)
旅行需求满足约束用于描述所有旅行者必须在研究的时间范围内完成旅行。这意味着所有的旅行者必须离开他们的原籍,最终到达他们的目的地。因此,我们有
∑ a ∈ A ( r ) U a s ( K ˉ ) − ∑ a ∈ B ( r ) V a s ( K ˉ ) = d r s ω ˉ (11) \sum_{a\in A(r)}U_a^s(\bar{K})-\sum_{a\in B(r)}V_a^s(\bar{K})=\frac{d^s_r}{\bar{\omega}} \tag{11} aA(r)Uas(Kˉ)aB(r)Vas(Kˉ)=ωˉdrs(11)
∑ a B ( s ) V a s ( K ˉ ) = ∑ r ∈ R d r s ω ˉ + ∑ a ∈ A ( s ) U a s ( K ˉ ) , ∀ s ∈ S (12) \sum_a{B(s)}V^s_a(\bar{K})=\sum_{r\in R}\frac{d^s_r}{\bar{\omega}}+\sum_{a\in A(s)}U_a^s(\bar{K}),\forall s\in S\tag{12} aB(s)Vas(Kˉ)=rRωˉdrs+aA(s)Uas(Kˉ),sS(12)
其中, ϖ ϖ ϖ是平均每节省一个SAV的游客人数。

继Ukkusuri等人(2012)、钱等人(2012)和龙等人(2018)之后,假设去往相同目的地 s ∈ S s ∈ S sS的旅行者具有相同的期望到达时间窗 [ k − s ∗ , k ˉ s ∗ ] [ k^*_{-s},\bar{k}^* _s ] [kskˉs],其中 k − s ∗ k^* _{-s} ks k ˉ ∗ s \bar{k}^* s kˉs分别代表与目的地 s s s相关联的最早和最晚活动开始时间。为了保证每日最大延迟的服务水平,我们实施了以下硬性限制:
V a s ( k ) = 0 , ∀ s ∈ S , a ∈ B ( s ) , k ∈ { 1 , . . . , k − s ∗ − ϑ ˉ − 1 } (13) V_a^s(k)=0,\forall s\in S,a\in B(s),k\in \{1,...,k_{-s}^*-\bar{\vartheta}-1\}\tag{13} Vas(k)=0,sS,aB(s),k{1,...,ksϑˉ1}(13)
V a s ( k ) = V a s ( K ˉ ) , ∀ s ∈ S , a ∈ B ( s ) , k ∈ { k ˉ s ∗ + ϑ ˉ + 1 , . . . , K ˉ − 1 } (14) V_a^s(k)=V_a^s(\bar{K}),\forall s\in S,a\in B(s),k\in \{\bar{k}^*_s+\bar{\vartheta}+1,...,\bar{K}-1\}\tag{14} Vas(k)=Vas(Kˉ),sS,aB(s),k{kˉs+ϑˉ+1,...,Kˉ1}(14)
其中 ϑ ˉ \bar{ϑ} ϑˉ是所有旅客和所有日子允许的最大日延误。约束条件(13)和(14)保证所有旅行者应在到达时间窗口 [ k − s ∗ − ϑ ˉ , K ˉ s ∗ + ϑ ˉ ] [k_{-s}^*-\bar{\vartheta},\bar{K}_s^*+\bar{\vartheta}] [ksϑˉ,Kˉs+ϑˉ]内到达目的地.

与源节点或目的节点的情况不同,一般节点不会产生额外的需求。因此,对于一般节点处的被占用车辆,我们有以下流量守恒约束:
∑ a ∈ B ( i ) V a s ( k ) = ∑ b ∈ A ( i ) U b s ( k ) , ∀ i ∈ O , s ∈ S , k ∈ K (15) \sum_{a\in B(i)}V_a^s(k)=\sum_{b\in A(i)}U_b^s(k),\forall i \in O,s\in S,k\in K\tag{15} aB(i)Vas(k)=bA(i)Ubs(k),iO,sS,kK(15)
其中等式左侧的第一项(LHS)。(16)表示进入节点I的已占用车辆流量。等式LHS上的第二项。(16)代表进入节点I的空车流量。等式LHS上的第三项。(16)代表时间间隔开始时停放的车辆数量。Eq的右侧(RHS)。(16)表示离开或停在该节点的累计车辆流量,包括:(I)已占用车辆(ii)空车辆(iii)将停在该节点的车辆。

∑ a ∈ B ( i ) ∑ s ∈ S V a s ( k ) + ∑ a ∈ B ( i ) V − a ( k ) + Q i ( 0 ) = ∑ a ∈ A ( i ) U − a ( k ) + Q i ( k ) , ∀ i ∈ N , k ∈ K (16) \sum_{a\in B(i)}\sum_{s\in S}V_a^s(k)+\sum_{a\in B(i)}V_{-a}(k)+\mathcal{Q}_i(0)=\sum_{a\in A(i)}U_{-a}(k)+\mathcal{Q}_i(k),\forall i \in N,k\in K\tag{16} aB(i)sSVas(k)+aB(i)Va(k)+Qi(0)=aA(i)Ua(k)+Qi(k),iN,kK(16)

根据定义,在任何停车场停车的车辆数量不得超过该停车场的停车位。因此,我们有
0 ≤ Q i ≤ p i , ∀ i ∈ N , k ∈ K (17) 0\leq \mathcal{Q}_i\leq p_i,\forall i \in N,k\in K\tag{17} 0Qipi,iN,kK(17)
根据定义,在研究期开始时,在停车场停车的sav总数必须等于车队规模。因此,我们有
∑ i ∈ N Q ( 0 ) = f . (18) \sum_{i\in N}\mathcal{Q}(0)=f.\tag{18} iNQ(0)=f.(18)
我们规定,在一天的交付任务后,研究期开始时任何停车场的车辆数量必须等于研究期结束时的车辆数量。因此,我们有
Q i ( 0 ) = Q i ( K ˉ ) , ∀ i ∈ N (19) \mathcal{Q}_i(0)=\mathcal{Q}_i(\bar{K}),\forall i \in N\tag{19} Qi(0)=Qi(Kˉ),iN(19)
定义约束用于描述按车辆类型和目的地分类的累积路段流入和流出的非负和非递减属性,如下所示:
U a s ( k ) ≥ U a s ( k − 1 ) a n d V a s ( k ) ≥ V a s ( k − 1 ) , ∀ a ∈ A , s ∈ S , k ∈ K (20) U_a^s(k)\geq U_a^s(k-1) \quad and \quad V_a^s(k)\geq V_a^s(k-1),\forall a\in A,s\in S,k\in K\tag{20} Uas(k)Uas(k1)andVas(k)Vas(k1),aA,sS,kK(20)
U − a ( k ) ≥ U − a ( k − 1 ) a n d V − a ( k ) ≥ V − a ( k − 1 ) , ∀ a ∈ A , k ∈ K (21) U_{-a}(k)\geq U_{-a}(k-1) \quad and \quad V_{-a}(k)\geq V_{-a}(k-1),\forall a\in A,k\in K\tag{21} Ua(k)Ua(k1)andVa(k)Va(k1),aA,kK(21)
最初,网络被认为是空的,因此分类累积流量等于零。因此,我们有
U a s ( 0 ) = V a s ( 0 ) = 0. ∀ a ∈ A , s ∈ S (22) U_a^s(0)=V_a^s(0)=0.\forall a\in A,s\in S\tag{22} Uas(0)=Vas(0)=0.aA,sS(22)
U − a ( 0 ) = V − a ( 0 ) = 0 , ∀ a i n A (23) U_{-a}(0)=V_{-a}(0)=0,\forall ain A\tag{23} Ua(0)=Va(0)=0,ainA(23)
注意,对于k = 1,初始条件(22)和(23)分别是约束(20)和(21)的输入。
总之,可在车队规模f、停车位向量p和出行需求向量d上定义DOP的可行解集。我们有以下定义:
Defination(Fesible solution set of DOP) 约束(8)-(21)形成了DOP的可行解集。该器械包的配方如下:

Ω ( f , p , d ) = { c o n g s t r a i n t s ( 8 ) − ( 21 ) h o l d } \Omega(f,p,d)=\{congstraints(8)-(21)hold\} Ω(f,p,d)={congstraints(8)(21)hold}

2.3 Linear programming formulation of the DOP

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值