卷积层与自然语言处理:从图像识别到语言理解的探索
1. 卷积层的核心原理
卷积层是深度学习中的重要概念,其核心思想是使用大量小的线性层,而非一个大的线性层。卷积层中的小线性层被称为卷积核,通常输入少于 25 个,输出为 1 个。卷积核会在图像的每个位置进行预测,具体过程如下:
- 卷积核在当前位置进行预测。
- 向右移动一个像素,再次进行预测,如此反复。
- 扫描完一行后,向下移动一个像素,再从左向右扫描,直到对图像的每个可能位置都进行了预测。
卷积层的输出是一系列较小的预测矩阵,这些矩阵将作为下一层的输入。通常,卷积层会有多个卷积核,每个卷积核可以学习特定的模式,并在图像中搜索该模式的存在。这种方法的优势在于,少量的权重可以在大量的训练样本上进行训练,从而减少过拟合,提高模型的泛化能力。
例如,对于一个 8×8 的图像,使用四个 3×3 的卷积核进行处理,每个卷积核会产生一个 6×6 的预测矩阵。可以对这些矩阵进行元素求和(sum pooling)、求均值(mean pooling)或求最大值(max pooling)。其中,max pooling 最为常用,即对于每个位置,从四个卷积核的输出中选取最大值,组成一个最终的 6×6 矩阵,该矩阵将被传递到下一层。
2. 卷积层的 NumPy 实现
以下是一个使用 NumPy 实现卷积层的简单示例:
import numpy as np, sys
np.random.seed(1)
from keras.datasets import mnist
(x_train, y_trai
超级会员免费看
订阅专栏 解锁全文
2209

被折叠的 条评论
为什么被折叠?



