中心极限定理之李雅普诺夫(Lyapunov)定理

设随机变量X_{1},X_{2},\cdots ,X_{n},\cdots相互独立,它们具有数学期望和方差

E(X_{k})=\mu _{k}

D(X_{k})=\sigma _{k}^{2}>0

式中,k=1,2,\cdots

将方差的和记为

B_{n}^{2}=\sum_{k=1}^{n}\sigma _{k}^{2}

若存在正数\delta,使得当n \to \infty时,

\frac{1}{B_{n}^{2+\delta }}\sum_{k=1}^{n}E\left \{ \left | X_{k}-\mu _{k} \right | ^{2+\delta }\right \}\rightarrow 0,

则随机变量之和\sum_{k=1}^{n}X_{k}的标准化变量

Z_{n}=\frac{\sum_{k=1}^{n}X_{k}-E(\sum_{k=1}^{n}X_{k})}{\sqrt{D(\sum_{k=1}^{n}X_{k})}}=\frac{\sum_{k=1}^{n}X_{k}-\sum_{k=1}^{n}\mu _{k} }{B_{n} }

的分布函数F_{n}(x)对于任意x满足

\lim_{n \to \infty }F_{n}(x)=\lim_{n \to \infty }P\left \{ \frac{\sum_{k=1}^{n}X_{k}-\sum_{k=1}^{n}\mu _{k} }{B_{n} }\leq x \right \}

=\int_{-\infty }^{x}\frac{1}{\sqrt{2\pi }}e^{-t^{2}/2}dt=\Phi (x)\; \; \; \; (1)

李雅普诺夫(Lyapunov)定理表明,在定理的条件下,随机变量Z_{n}=\frac{\sum_{k=1}^{n}X_{k}-\sum_{k=1}^{n}\mu _{k} }{B_{n} }

n很大时,近似地服从正态分布N(0,1)。也就是说,当n很大时,变量\sum_{k=1}^{n}X_{k}=B_{n}Z_{n}+\sum_{k=1}^{n}\mu _{k}近似地服从正态分布N(\sum_{k=1}^{n}\mu _{k},B_{n}^{2})。这就是说,无论各个随机变量X_{k}(k=1,2,\cdots )服从什么分布,只要满足定理的条件,那么它们的和\sum_{k=1}^{n}X_{k}n很大时,就近似地服从正态分布。

在很多实际问题中,所考虑的随机变量可以表示成多个独立的随机变量之和。

  • 8
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值