傅里叶有限级数

文章探讨了傅里叶级数在表示周期函数时,如何通过有限项级数进行近似,介绍了均方误差的概念以及随着项数增加会出现的吉布斯现象,通过实例展示了矩形波和锯齿波的吉布斯效应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶有限级数

一般来说,任意周期函数表示为傅里叶级数时,需要无限多项才能完全逼近原函数。但在实际应用中,不可能取无限多项,而是取有限项级数来代替无限项级数。

已知周期函数f(t)的傅里叶级数为

f(t)=a_{0}+\sum_{n=1}^{\infty }(a_{n}\cos n\omega t+b_{n}\sin n\omega t)

若取傅里叶级数的前2N+1项来逼近f(t),则有限项傅里叶级数为

S_{N}(t)=a_{0}+\sum_{n=1}^{N }(a_{n}\cos n\omega t+b_{n}\sin n\omega t)

均方误差

这样用有限项来逼近的误差为

\varepsilon _{N}(t)=f(t)-S_{N}(t)

均方误差等于

E_{N}=\overline{\varepsilon _{N}^{2}(t)}=\frac{1}{T}\int_{-T/2}^{T/2}\varepsilon _{N}^{2}(t)dt

f(t)S_{N}(t)代入,并经过化简,得到

E_{N}=\overline{\varepsilon _{N}^{2}(t)}=\overline{f^{2}(t)}-\left [ a_{0}^{2} +\frac{1}{2}\sum_{n=1}^{N}(a_{n}^{2}+b_{n}^{2})\right ]

吉布斯(Gibbs)现象

当选取傅里叶有限级数的项数越多,在所合成的波形S_{N}中出现的峰起越靠近f(t)的不连续点。当所选取的项数N很大时,该峰起值趋向于一个常数,大约等于总跳变值的9%,并从不连续点开始以起伏震荡的形式逐渐衰减下去。这种现象称为吉布斯(Gibbs)现象。

下面矩形波和锯齿波所呈现的吉布斯现象的图来自《信号与系统_第三版_郑君里_上》:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值