傅里叶有限级数
一般来说,任意周期函数表示为傅里叶级数时,需要无限多项才能完全逼近原函数。但在实际应用中,不可能取无限多项,而是取有限项级数来代替无限项级数。
已知周期函数的傅里叶级数为
若取傅里叶级数的前项来逼近
,则有限项傅里叶级数为
均方误差
这样用有限项来逼近的误差为
均方误差等于
将和
代入,并经过化简,得到
吉布斯(Gibbs)现象
当选取傅里叶有限级数的项数越多,在所合成的波形中出现的峰起越靠近
的不连续点。当所选取的项数
很大时,该峰起值趋向于一个常数,大约等于总跳变值的9%,并从不连续点开始以起伏震荡的形式逐渐衰减下去。这种现象称为吉布斯(Gibbs)现象。
下面矩形波和锯齿波所呈现的吉布斯现象的图来自《信号与系统_第三版_郑君里_上》: