四元数简要理解(主要针对计算机图形学)

本文简要介绍了四元数的概念及其在计算机图形学中的应用,特别是在旋转表示中的重要作用。通过从复数出发,逐步引入四元数的概念,解释了四元数如何解决三维空间旋转的难题。讨论了单位四元数、旋转公式以及半角旋转的概念,为理解四元数在图形学中的旋转操作提供了基础。
摘要由CSDN通过智能技术生成

1.a+bi,a被称为实部,b被称为虚部

2.a+bi->(a,b) 用有序数对来表示

(a,b)=(a,0)+(b,0)

(a,0)+(b,0) = a(1,0)+b(0,1)

那么只需要证明

(1,0) = 1  (0,1)=i

首先证明(1,0)=1

(1,0)(1,0)=(1,0)等同x^2=x 求得x=1,也就证明了(1,0)等同于自然数1

(0,1)(0,1)=(-1,0)等同x^2=-1因为只有i^2 = -1,所以(0,1)等同于i

经此证明 复数可以用对数序列来表示

3.a+bi-> \left( \begin{matrix} a & -b\\ b & a \end{matrix} \right)用矩阵来表示

这个理解起来就略显生涩,这里大概说一下基本的思想

①C = a\hat{R}+b\hat I 注释 C:矩阵 \hat R:代表1的矩阵 \hat I代表i的矩阵。

像有序对表示复数一样,我们需要找到能够代表1的矩阵和代表i的矩阵

②.a*1=a 1的矩阵就意味着什么都不做可以使用\bigl(\begin{smallmatrix} 1 & 0 \\ 0& 1 \end{smallmatrix}\bigr)单位阵

③1很好理解一个数乘以1代表什么都不干,用方阵就可以表示。

i怎么办呢,这就不得不提i的一个特性就是乘以i等同于旋转90度

也就是\bigl(\begin{smallmatrix} 0 &-1 \\ 1& 0 \end{smallmatrix}\bigr)这里就有点生硬了,因为这部分知识需要用到复平面的知识,在后面会有介绍

④经过2和3我们可以得到a \bigl(\begin{smallmatrix} 1& 0\\ 0 & 1 \end{smallmatrix}\bigr) + b \bigl(\begin{smallmatrix} 0& -1\\ 1& 0 \end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix} a& -b\\ b& a \end{smallmatrix}\bigr)

还需要注意一点就是这里用的是列矩阵

4.复平面:x坐标作为实部,y坐标作为虚部,xy构成的二维平面就是复平面

欧拉公式e^{i\theta } = \cos \theta + i\sin \theta,实部作为横坐标,虚部作为纵坐标,则再二维平面构成了一个圆

\theta=\frac{\pi }{2}时得到e^{i\frac{\pi }{2} } = i

同理还可推得i^{i}=e^{-\frac{\pi}{2}} = 0.207879.............

极坐标表示法 z = a+bi = re^{i\theta }

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值