5.2 晶体管的高频等效模型

从晶体管的物理结构出发,考虑发射结和集电结电容的影响,就可以得到在高频信号作用下的物理模型,称为混合 π \pmb{π} π 模型。由于晶体管的混合 π π π 模型与 h h h 参数等效模型在低频信号作用下具有一致性,因此,可用 h h h 参数来计算混合 π π π 模型中的某些参数,并用于高频信号作用下的电路分析。

一、晶体管的混合 π 模型

1、完整的混合 π 模型

图5.2.1(a)所示为晶体管结构示意图。 r c r_c rc r e r_e re 分别为集电区体电阻和发射区体电阻,它们的数值较小,常常忽略不计。 C μ C_μ Cμ 为集电结电容, r b ′ c ′ r_{b'c'} rbc 为集电结电阻, r b b ′ r_{bb'} rbb 为基区体电阻, C π C_π Cπ 为发射结电容, r b ′ e ′ r_{b'e'} rbe 为发射结电阻。图(b)是与图(a)对应的混合 π π π 模型。
在这里插入图片描述图中,由于 C π C_π Cπ C μ C_μ Cμ 的存在,使 I ˙ c \dot I_c I˙c I ˙ b \dot I_b I˙b 的大小、相角均与频率有关,即电流放大系数是频率的函数,应记作 β ˙ \dot \beta β˙。根据半导体物理的分析,晶体管的受控电流 I ˙ c \dot I_c I˙c 与发射结电压 U ˙ b ′ e \dot U_{b'e} U˙be 成线性关系,且与信号频率无关。因此,混合 π π π 模型中引入了一个新参数 g m g_m gm g m g_m gm 为跨导,描述 U ˙ b ′ e \dot U_{b'e} U˙be I ˙ c \dot I_c I˙c 的控制作用,即 I ˙ c = g m U ˙ b ′ e \dot I_c=g_m\dot U_{b'e} I˙c=gmU˙be

2、简化的混合 π 模型

在图5.2.1(b)所示电路中,通常情况下, r c e r_{ce} rce 远大于 c - e 间所接的负载电阻,而 r b ′ c r_{b'c} rbc 也远大于 C μ C_μ Cμ 的容抗,因而可认为 r c e r_{ce} rce r b ′ e r_{b'e} rbe 开路,如图5.2.2(a)所示。在这里插入图片描述由于 C μ C_μ Cμ 跨接在输入与输出回路之间,使电路的分析变得十分复杂。因此,为简单起见, C μ \pmb{C_μ} Cμ 等效到输入回路和输出回路中去,称为单向化。单向化是通过等效变换来实现的,设 C μ C_μ Cμ 折合到 b’ - e 间的电容为 C μ ′ C'_μ Cμ,折合到 c - e 间的电容为 C μ ′ ′ C''_μ Cμ′′,则单向化之后的电路如图(b)所示。
等效变换过程如下:在图(a)所示电路中,从 b ′ b' b 看进去 C μ C_μ Cμ 中流过的电流为 I ˙ C μ = U ˙ b ′ e − U ˙ c e X C μ = ( 1 − K ˙ ) U ˙ b ′ e X C μ ( K ˙ = U ˙ c e U ˙ b ′ e ) \dot I_{C_μ}=\frac{\dot U_{b'e}-\dot U_{ce}}{X_{C_μ}}=\frac{(1-\dot K)\dot U_{b'e}}{X_{C_μ}}\kern 30pt(\dot K=\frac{\dot U_{ce}}{\dot U_{b'e}}) I˙Cμ=XCμU˙beU˙ce=XCμ(1K˙)U˙be(K˙=U˙beU˙ce)为保证变换的等效性,要求流过 C μ ′ C'_μ Cμ 的电流仍为 I ˙ C μ \dot I_{C_μ} I˙Cμ,而它的端电压为 U ˙ b ′ e \dot U_{b'e} U˙be,因此 C μ ′ C'_μ Cμ 的电抗为 X C μ ′ = U ˙ b ′ e I ˙ C μ = U ˙ b ′ e ( 1 − K ˙ ) U ˙ b ′ e X C μ = X C μ 1 − K ˙ X_{C'_μ}=\frac{\dot U_{b'e}}{\dot I_{C_μ}}=\frac{\dot U_{b'e}}{(1-\dot K)\displaystyle\frac{\dot U_{b'e}}{X_{C_μ}}}=\frac{X_{C_μ}}{1-\dot K} XCμ=I˙CμU˙be=(1K˙)XCμU˙beU˙be=1K˙XCμ考虑在近似计算时, K ˙ \dot K K˙ 取中频时的值,所以 ∣ K ˙ ∣ = − K ˙ |\dot K|=-\dot K K˙=K˙(因为 U ˙ c e \dot U_{ce} U˙ce U ˙ b ′ e \dot U_{b'e} U˙be 反相)。 X C μ ′ X_{C'_μ} XCμ 约为 X C μ X_{C_μ} XCμ ( 1 + K ˙ ) (1+\dot K) (1+K˙) 分之一, X = 1 j ω C X=\displaystyle\frac{1}{j\omega C} X=C1,因此 C μ ′ = ( 1 − K ˙ ) C μ ≈ ( 1 + ∣ K ˙ ∣ ) C μ ( 5.2.1 ) C'_μ=(1-\dot K)C_μ\approx(1+|\dot K|)C_μ\kern 40pt(5.2.1) Cμ=(1K˙)Cμ(1+K˙)Cμ(5.2.1) b ′ b' b - e 间总电容为 C π ′ = C π + C μ ′ ≈ C π + ( 1 + ∣ K ˙ ∣ ) C μ ( 5.2.2 ) C'_π=C_π+C'_μ\approx C_π+(1+|\dot K|)C_μ\kern 30pt(5.2.2) Cπ=Cπ+CμCπ+(1+K˙)Cμ(5.2.2)用同样的方法分析,可以得出 C μ ′ ′ = K ˙ − 1 K ˙ ⋅ C μ ( 5.2.3 ) C''_μ=\frac{\dot K-1}{\dot K}\cdot C_μ\kern 108pt(5.2.3) Cμ′′=K˙K˙1Cμ(5.2.3)因为 C π ′ > > C μ ′ ′ C'_π>>C''_μ Cπ>>Cμ′′,且一般情况下 C μ ′ ′ C''_μ Cμ′′ 的容抗远大于 R L ′ R'_L RL C μ ′ ′ C''_μ Cμ′′ 中的电流可忽略不计,所以简化的混合 π π π 模型如图( c c c)所示。

3、混合 π 模型的主要参数

将简化的混合 π π π 模型与简化的 h h h 参数等效模型相比较,它们的电阻参数是完全相同的,从手册中可查得 r b b ′ r_{bb'} rbb,而 r b ′ e = ( 1 + β 0 ) U T I E Q ( 5.2.4 ) r_{b'e}=(1+\beta_0)\frac{U_T}{I_{EQ}}\kern 80pt(5.2.4) rbe=(1+β0)IEQUT(5.2.4)式中 β 0 \beta_0 β0 为低频段晶体管的电流放大系数。虽然利用 β \beta β g m g_m gm 表述的受控关系不同,但是它们所要表述的却是同一个物理量,即 I ˙ c = g m U ˙ b ′ e = β 0 I ˙ b \dot I_c=g_m\dot U_{b'e}=\beta_0\dot I_b I˙c=gmU˙be=β0I˙b由于 U ˙ b ′ e = I ˙ b r b ′ e \dot U_{b'e}=\dot I_br_{b'e} U˙be=I˙brbe,且 r b ′ e r_{b'e} rbe 如式(5.2.4)所示,又由于通常 β 0 > > 1 \beta_0>>1 β0>>1,所以 g m = β 0 r b ′ e ≈ I E Q U T ( 5.2.5 ) g_m=\frac{\beta_0}{r_{b'e}}\approx\frac{I_{EQ}}{U_T}\kern 90pt(5.2.5) gm=rbeβ0UTIEQ(5.2.5)在半导体器件手册中可以查得参数 C o b C_{ob} Cob C o b C_{ob} Cob 是晶体管为共基接法且发射极开路时 c - b 间的结电容, C μ C_μ Cμ 近似为 C o b C_{ob} Cob C π C_π Cπ 的数值可通过手册给出的特征频率 f T f_T fT 和放大电路的静态工作点求解,见下面的分析。 K ˙ \dot K K˙ 是电路的电压放大倍数,可通过计算得到。

二、晶体管电流放大倍数的频率响应

从混合 π π π 等效模型可以看出,管子工作在高频段时,若基极注入的交流电流 I ˙ b \dot I_b I˙b 的幅值不变,则随着信号频率的升高, b ′ b' b - e 间的电压 U ˙ b ′ e \dot U_{b'e} U˙be 的幅值将减小,相移将增大;从而使 I ˙ c \dot I_c I˙c 的幅值随着 ∣ U ˙ b ′ e ∣ |\dot U_{b'e}| U˙be 线性下降,并产生与 U ˙ b ′ e \dot U_{b'e} U˙be 相同的相移。可见,在高频段,当信号频率变化时 I ˙ c \dot I_c I˙c I ˙ b \dot I_b I˙b 的关系也随之变化,电流放大系数不是常量, β ˙ \dot \beta β˙ 是频率的函数。
根据电流放大系数的定义 β ˙ = I ˙ c I ˙ b ∣ U C E \dot \beta=\frac{\dot I_c}{\dot I_b}\Big|_{U_{CE}} β˙=I˙bI˙c UCE表明 β ˙ \dot\beta β˙ 是在 c - e 间无动态电压,即令图5.2.2( c c c) 所示电路中 c - e 间电压为零时动态电流 I ˙ c \dot I_c I˙c I ˙ b \dot I_b I˙b 之比,因此 K ˙ = 0 \dot K=0 K˙=0。根据式(5.2.2) C π ′ ≈ C π + ( 1 + ∣ K ˙ ∣ ) C μ = C π + C μ C'_π\approx C_π+(1+|\dot K|)C_μ=C_π+C_μ CπCπ+(1+K˙)Cμ=Cπ+Cμ由于 I ˙ c = g m U ˙ b ′ e \dot I_c=g_m\dot U_{b'e} I˙c=gmU˙be g m = β 0 / r b ′ e g_m=\beta_0/r_{b'e} gm=β0/rbe,所以 β ˙ = I ˙ c I ˙ r b ′ e + I ˙ C π ′ = g m U ˙ b ′ e U ˙ b ′ e ( 1 r b ′ e + j ω C π ′ ) = β 0 1 + j ω r b ′ e C π ′ ( 5.2.6 ) \dot\beta=\frac{\dot I_c}{\dot I_{r_{b'e}}+\dot I_{C'_π}}=\frac{g_m\dot U_{b'e}}{\dot U_{b'e}(\displaystyle\frac{1}{r_{b'e}}+j\omega C'_π)}=\frac{\beta_0}{1+j\omega r_{b'e}C'_π}\kern 15pt(5.2.6) β˙=I˙rbe+I˙CπI˙c=U˙be(rbe1+Cπ)gmU˙be=1+rbeCπβ0(5.2.6)与式(5.1.5)的形式完全一样,说明 β ˙ \dot\beta β˙ 的频率响应与低通电路相似。 f β f_{\beta} fβ β ˙ \dot \beta β˙ 的截止频率,称为共射截止频率 f β = 1 2 π τ = 1 2 π r b ′ e C π ′ ( C π ′ = C π + C μ ) ( 5.2.7 ) f_\beta=\frac{1}{2π\tau}=\frac{1}{2πr_{b'e}C'_π}\kern 15pt(C'_π=C_π+C_μ)\kern 65pt(5.2.7) fβ=2πτ1=2πrbeCπ1(Cπ=Cπ+Cμ)(5.2.7)将其代入式(5.2.6),其中 f = ω 2 π f=\displaystyle\frac{\omega}{2π} f=2πω,得出 β ˙ = β 0 1 + j f f β ( 5.2.8 ) \dot \beta=\frac{\beta_0}{1+j\displaystyle\frac{f}{f_\beta}}\kern 190pt(5.2.8) β˙=1+jfβfβ0(5.2.8)写出 β ˙ \dot \beta β˙ 的对数幅频特性与对数相频特性为 { 20 lg ⁡ ∣ β ˙ ∣ = 20 lg ⁡ β 0 − 20 lg ⁡ 1 + ( f f β ) 2 ( 5.2.9 a ) φ = − arctan ⁡ f f β ( 5.2.9 b ) \left\{\begin{matrix}20\lg|\dot \beta|=20\lg\beta_0-20\lg{\sqrt{1+\displaystyle(\frac{f}{f_\beta}})^2}\kern 71pt(5.2.9a)\\\varphi=-\arctan\displaystyle\frac{f}{f_\beta}\kern 162pt(5.2.9b)\\\end{matrix}\right. 20lgβ˙=20lgβ020lg1+(fβf )2(5.2.9a)φ=arctanfβf(5.2.9b)画出 β ˙ \dot \beta β˙ 的折线化波特图如图5.2.3所示,图中 f T f_T fT 是使 ∣ β ˙ ∣ |\dot \beta| β˙ 下降到 1 (即 0 dB)时的频率。在这里插入图片描述令式(5.2.9a)等于 0,则 f = f T f=f_T f=fT,由此可求出 f T f_T fT 20 lg ⁡ β 0 − 20 lg ⁡ 1 + ( f T f β ) 2 或 1 + ( f T f β ) 2 = β 0 20\lg\beta_0-20\lg\sqrt{1+\left(\frac{f_T}{f_\beta}\right)^2}\kern 10pt或\kern 10pt\sqrt{1+\left(\frac{f_T}{f_\beta}\right)^2}=\beta_0 20lgβ020lg1+(fβfT)2 1+(fβfT)2 =β0 f T > > f β f_T>>f_\beta fT>>fβ,所以 f T ≈ β 0 f β ( 5.2.10 ) f_T\approx\beta_0f_\beta\kern 100pt(5.2.10) fTβ0fβ(5.2.10)利用 β ˙ \dot \beta β˙ 的表达式,可以求出 α ˙ \dot \alpha α˙ 的截止频率 α ˙ = β ˙ 1 + β ˙ = β 0 1 + j f / f β 1 + β 0 1 + j f / f β = β 0 1 + β 0 + j f / f β = β 0 1 + β 0 1 + j f ( 1 + β 0 ) f β \dot \alpha=\frac{\dot \beta}{1+\dot\beta}=\frac{\displaystyle\frac{\beta_0}{1+jf/f_\beta}}{1+\displaystyle\frac{\beta_0}{1+jf/f_\beta}}=\frac{\beta_0}{1+\beta_0+jf/f_\beta}=\frac{\displaystyle\frac{\beta_0}{1+\beta_0}}{1+j\displaystyle\frac{f}{(1+\beta_0)f_\beta}} α˙=1+β˙β˙=1+1+jf/fββ01+jf/fββ0=1+β0+jf/fββ0=1+j(1+β0)fβf1+β0β0 α ˙ = α 0 1 + j f f α [ f α = ( 1 + β 0 ) f β ] ( 5.2.11 ) \dot\alpha=\frac{\alpha_0}{1+j\displaystyle\frac{f}{f_\alpha}}\kern 10pt[f_\alpha=(1+\beta_0)f_\beta]\kern 10pt(5.2.11) α˙=1+jfαfα0[fα=(1+β0)fβ](5.2.11) f α f_\alpha fα 是使 ∣ α ˙ ∣ |\dot \alpha| α˙ 下降到 70.7 % α 0 70.7\%\alpha_0 70.7%α0 的频率,称为共基截止频率。式(5.2.11)表明 f α = ( 1 + β 0 ) f β ≈ f T ( 5.2.12 ) f_\alpha=(1+\beta_0)f_\beta\approx f_T\kern 58pt(5.2.12) fα=(1+β0)fβfT(5.2.12)可见,共基电路的截止频率远高于共射电路的截止频率,因此共基放大电路可作为宽频带放大电路。
在器件手册中查出 f β f_\beta fβ(或 f T f_T fT)和 C o b C_{ob} Cob(近似为 C μ C_μ Cμ),并估算出发射极静态电流 I E Q I_{EQ} IEQ,从而得到 r b ′ e r_{b'e} rbe [见式(5.2.4)],再根据式(5.2.7)、(5.2.10)就可求出 C π C_π Cπ 的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值