这里写目录标题
频率响应介绍
由于电抗元件(如电容、电感等)与半导体管间极间电容的存在,当输入信号的频率过高或过低时,会产生超前或滞后的相移,此时放大倍数是信号频率的函数,这种函数关系称为频率响应。
正是因为频率响应,所以我们在第二章放大电路的性能指标中提出了通频带的概念。
通频带宽,代表放大电路对不同频率信号的适应能力强。
耦合电容,对信号构成了高通电路,1.对频率够高的信号相当于短路,信号几乎可以无损失的通过。2.信号频率低时,容抗不可忽略,信号将在其上面产生压降,导致放大电路的放大倍数减小且产生位移。
半导体极间电容,对信号构成了低通电路,1.对频率低的信号相当于开路。2.信号频率高时,极间电容将分流,导致放大电路的放大倍数减小且产生位移。
高通电路
由公式推导可看出:对于高通电路,频率越低,衰减越大
低通电路
我们发现:Au与f的关系在这个图中比较难以展示。输入信号的频率赫兹往往以兆为单位。而放大倍数可以达到几百万倍。
当我们需要在坐标系中表示如此宽的范围,可以引入对数坐标描述,从而引入波特图。
波特图
对数幅频特性曲线:
频率特性幅值的对数值L=20lgAu(dB)与频率f 的关系曲线
对数相频特性曲线:
频率特性的相角 (度)与频率f 的关系曲线。
因为当 f=fH 时,分贝数减少只有3分贝,所以在误差允许范围内,我们可以假设当当 f=fH 时,分贝数为0。即转为折线图。
晶体管的高频等效模型
其原理与我们前面学习的等效电路画法一样
1.完整的混合Π模型
由此我们可以画出混合Π模型
此模型过于复杂,不好计算。我们通过简化电路来达到简易计算的目的。
上图的短路改成开路
且 C μ C_\mu Cμ跨接在输入回路与输出回路之间,如果能像共射放大电路的等效模型一样把输入端与输出端分开就好了。
于是我们可以将 C μ C_\mu Cμ分解,等效至输入回路与输出回路两端。
我们将此过程称为单向化。
如何确定新增两个电容值呢?
我们发现流过总电容与流过分立电容的电流值是一样的。
I c μ = U ˙ b ′ e − U ˙ c e X c μ = ( 1 − K ˙ ) U ˙ b ′ e X c μ , 设 K ˙ = U ˙ c e U ˙ b ′ e I_{c\mu}=\frac{\dot U_{b'e}-\dot U_{ce}}{X_{c_\mu}}=\frac{(1-\dot K)\dot U_{b'e}}{X_{c_\mu}} ,设\dot K=\frac{\dot U_{ce}}{\dot U_{b'e}} Icμ=Xc