“函数”一词的来历

注:中学里有一次函数、反比例函数、二次函数等,“函数”一词因为其与学生的实际知识与体验相去甚远,而使学生感到极其抽象,理解困难,感到学习函数相当难。如何给学生讲清楚函数的意义,就象孙维刚老师给学生讲解“有理数”那样彻底的话,学生就不再为函数而发愁,现将函数有关来历修解如下:
  “函数”一词最初是由德国的数学家莱布尼茨在17世纪首先采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,即x2,x3,….接下来莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等等所有与曲线上的点有关的变量.就这样“函数”这词逐渐盛行.
  这种解释我并不赞同,当初莱布尼茨决不是用“函数”这两个字来表示的。函数肯定是中国人说的。莱懂汉语吗,他就用“函数”了?这种解释等于没有解释。
  在中国,古时候的人将“函”字与“含”字通用,都有着“包含”的意思,清代数学家、天文学家、翻译家和教育家,近代科学的先驱者李善兰给出的定义是:“凡式中含天,为天之函数.”中国的古代人还用“天、地、人、物”4个字来表示4个不同的未知数或变量,显然,在李善兰的这个定义中的含义就是“凡是公式中含有变量x,则该式子叫做x的函数.”这样,在中国“函数”是指公式里含有变量的意思.这样解释还算不错。   瑞士数学家雅克·柏努利给出了和莱布尼茨相同的函数定义.
  1718年,雅克·柏努利的弟弟约翰·柏努利给出了函数如下的定义:由任一变数和常数的任意形式所构成的量叫做这一变数的函数.换句话说,由x和常量所构成的任一式子都可称之为关于x的函数.   1775年,欧拉把函数定义为:“如果某些变量:以某一种方式依赖于另一些变量.即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”由此可以看到,由莱布尼兹到欧拉所引入的函数概念,都还是和解析表达式、曲线表达式等概念纠缠在一起.   首屈一指的法国数学家柯西引入了新的函数定义:“在某些变数间存在着一定的关系,当已经给定其中某一变数的值,其它变数的值也可随之而确定时,则将最初的变数称之为‘自变数’,其它各变数则称为‘函数’”.在柯西的定义中,首先出现了“自变量”一词.   1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的”.这个定义指出了对应关系。即条件的必要性,利用这个关系以求出每一个x的对应值.    1837年德国数学家狄里克雷认为怎样去建立x与y之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数.”   德国数学家黎曼引入了函数的新定义:“对于x的每一个值,y总有完全确定了的值与之对应,而不拘建立x,y之间的对应方法如何,均将y称为x的函数.”   上面函数概念的演变,我们可以知道,函数的定义必须抓住函数的本质属性,变量y称为x的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的y值和它对应就行了,不管这个法则是公式或图象或表格或其他形式.   由此,就有了我们课本上的函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
  不满意。以上这些只是对函数概念的演化作归纳,而非对“函数”本身进行解释。没有多大意义。有待进一步寻找解释得清楚的内容。

又有说:

“函数”这个词在我国是由清代数学家李善兰于1859年(咸丰九年)翻译《代数积拾级》一书时最先使用的,他将,tf unction”一词译成“函数”,并给出定义,a凡此变数中函彼变数,则此为彼之函数。如直线之式为地二甲天1乙(1)则地为天之函数。”这里“函”是包含的意思。如用戈与y代未知数“天”与“地”,用A与B代常数 “甲”与“乙”,(1)式可写成. y‘过戈+B.在这个式子里,变量y包含着变量x,那么y就是x的函数。在国外,最早使用“函数”(拉丁文fu n ctio,作,功用之意)一词,要推微积分的创始人之一的德国大数学家菜布尼兹(Leibniz)。他在1673年的一篇手稿里用“functio”来表示任何一个随着曲线上的点的变动而变动的量。而牛顿(Newton)在微积分中一直使用“流量”(fluent)一词来表示变量间的关系。正式采用符号f(二)表示函数的则是伟大的数学家欧拉(E以er)开始的。顺便指出,函数概念业非出自几位数学家的空想,而是源于那个时代对天文和航海等运动问题的研究。17世纪早期,在伽里略(Galile’o)否定了地球中心说,给太阳中......

现行数学教科书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成函数的.

中国古代“函”字与“含”字通用,都有着“包含”的意思,李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量,则该式子叫做 的函数.”所以“函数”是指公式里含有变量的意思.

你知道“函数”是怎样发展来的吗?让我们一起回顾一下函数概念的发展史吧,这对于刚接触到函数的初中同学来说,虽然不可能有较深理解,但无疑对加深理解课堂知识、激发学习兴趣将是大有益处的.

函数(function)这一名词,是德国的数学家莱布尼茨(Liebniz 1646—1716)17世纪首先采用的.在最初,莱布尼茨用函数一词表示变量 的幂,即 ,,….其后莱布尼茨还用函数一词表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等所有与曲线上的点有关的量.

与莱布尼茨几乎同时,瑞士数学家雅克·柏努意(Jacques Bernoulli 1645—1705)给出了和莱布尼茨相同的函数定义.1718年,雅克·柏努意的弟弟约翰·柏努意(Jean Bernoulli1667—1748)给出了函数的如下定义:由任一变数和常数的任意形式所构成的量叫做这一变数的函数.换句话说定义为:由和常量所构成的任一式子都可称之为关于 的函数.

约翰·柏努意的学生瑞士数学家欧拉(Euler 1707—1783),把约翰·柏努意关于函数的定义又推进了一步,使之更加明朗化.1775年,欧拉把函数定义为:“如果某些变量:以某一种方式依赖于另一些变量.即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”

由此可以看到,由莱布尼兹到欧拉所引入的函数概念,都还是和解析表达式、曲线表达式等概念纠缠在一起.

为了适应当时所出现的各种情况,为了适应数学的发展,法国数学家柯西(Cauchy 1789—1857)引入了新的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其它变数的值也可随之而确定时,则将最初的变数称之为‘自变数’,其它各变数则称为‘函数’.”在柯西的定义中,首先出现了“自变量”一词.

人们不难看出,这一定义和中学课本的定义是很相近的.在这里,函数的概念和曲线、连续、不连续等概念之间的纠缠不清的情况,已经得到了澄清.

但是,柯西的定义总还是考虑到 , 之间的关系可用解析式表示.德国数学家黎曼(Riemann 1826—1866)引入了新的定义:“对于 的每一个值, 总有完全确定了的值与之对应,而不拘建立 , 之间的对应方法如何,均将 称为的函数.”

1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“ 的函数是这样的一个数,它对于每一个 都有确定的值 ,并且随着一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的”,这个定义指出了对应关系(条件)的必要性,利用这个关系以求出每一个的对应值.

1837年德国数学家狄里克雷认为怎样去建立 与 之间的对应关系是无关紧要的,所以他的定义是:“如果对于 的每一个值,总有一个完全确定的值与之对应,则 是 的函数.”这个定义抓住了概念的本质属性,变量 称为的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的值和它对应就行了,不管这个法则是公式或图象或表格或其他形式.这个定义比前面的定义带有普偏性,为理论研究和实际应用提供了方便.因此,这个定义曾被比较长期的使用着.

上面我们对函数概念的历史发展作了概述,我们看到,“函数”这个重要概念发展到近代,经过了一段如此漫长的道路,从某种意义上来说,它反映了人类对事物逐渐精确化的认识过程.数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用.


补充:函数与方程的区别

变量之间的函数关系是严格的对应关系,如果x是自变量,因变量y与x必须一一对应,即每一个x,在定义域D内,都只能对应一个y,不能对应多个。但是反过来,每一个因变量y,可以对应多个x,这样的函数就没有反函数。只有x与y都严格一一对应的情况,x与y才能互反。

注:个人理解所谓“函数”是一个数,即 有内涵,涵义的数,这个数的涵义由一种对应关系指定,例如y=x+1,y是x的函数,x+1是这个函数y的关系(涵义),这个关系描述了函数与变量之间的联系。假设我拿着一支钢笔告诉你,这不是一支普通的钢笔,因为是我爷爷留给我的,那么这支钢笔就有了它的内涵。类似地,我告诉你y不是一个普通的变量,是一个函数,因为它是由x+1得到的,那么y内涵就是x+1。

方程描述是几个变量之间的关系,这样的关系可以是函数关系,也可以不是函数关系,比如二维坐标系中的圆的方程式:x2+y2=R2x2+y2=R2,在这个方程式中,x和y之间都是一对多的关系。但是如果设定x或y的取值范围,这个方程对应的也可以是一个函数关系。

课本上都显函数和隐函数的概念,显函数就是可以将关系式写成y=f(x)这样形式的函数,这样的函数都是初等函数(含幂指函数);隐函数有些可以通过形式变换,也变换成显函数,有些则不行。一般由方程确定的隐函数,并不能转换成显函数的形式,这时我们称这样的函数为非初等函数

函数解析表达式一般讲y写在等号左边,x写在等号右边,自变量和因变量分开(除了隐函数可能无法这样写出);方程一般协成F(x,y)=0这样的形式。方程也是一种函数,我们所谓的对隐函数求导的方法,就是在某个方程上直接事情,是有效的,并不因为方程有可能不是严格的函数而发成错误。

以上是我个人理解的函数与方程之间的区别。函数与方程显然也存在很多联系,隐函数看起来就很想一个方程式,而如果限制方程式变量的取值范围,也能得到函数式的对应关系。


  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值