一、配准算法 1.1 基于特征点的配准 二、传统算法 传统算法代表:ICP[ICP],RPM等,涉及很多经验参数选择 SAC-IA[参考] 问题:在描述特征较少的情况下,最好的匹配m;可能不是d真正的对应 三、基于学习的方法 需要手工涉及的参数和迭代现在全部交给神经网络去做。 RPM-Net: Robust Point Matching using Learned Features(相当于用深度学习一条龙服务得到变换矩阵)[参考]