点云匹配算法 02

一、配准算法

1.1 基于特征点的配准

 

二、传统算法

传统算法代表:ICP[ICP],RPM等,涉及很多经验参数选择

SAC-IA[参考]

 问题:在描述特征较少的情况下,最好的匹配m;可能不是d真正的对应

 

三、基于学习的方法

需要手工涉及的参数和迭代现在全部交给神经网络去做。

 RPM-Net: Robust Point Matching using Learned Features(相当于用深度学习一条龙服务得到变换矩阵)[参考]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值