QMT回测时账户可用金额居然出现负数

该代码段使用Python库pandas、numpy和talib进行股票策略回测。在上下文信息中设置了账户ID,并在handlebar函数中根据时间标签执行交易订单,进行双均线选股策略。同时,获取并打印了账户的可用余额。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#encoding:gbk

import pandas as pd
import numpy as np
import talib

def init(ContextInfo):
	ContextInfo.accID='11112222'
	ContextInfo.set_account(ContextInfo.accID)
		
def handlebar(ContextInfo):
	timetag=ContextInfo.get_bar_timetag(ContextInfo.barpos)
	ContextInfo.dt=timetag_to_datetime(timetag,'%Y-%m-%d %H:%M:%S')
	ContextInfo.end_time=timetag_to_datetime(timetag,'%Y%m%d')
	print(ContextInfo.dt,'-'*30)
	#河化股份用金额方式下单103112元,初始资金设置103112元
	passorder(23,1102,ContextInfo.accID,'000953.SZ',5,-1,103112,'双均线选股策略',1,'001',ContextInfo)
	data=get_trade_detail_data(ContextInfo.accID,'STOCK','ACCOUNT') #获取资金账户的账户对象
	print('可用余额',data[0].m_dAvailable) #打印输出账户的可用金额

回测时间设置2020年2月6日,设置与图一样的初始资金和手费费,其他设置没有试过

  

 

03-12
<think>好的,用户的问题是关于QMT(Quantitative Trading Platform)、quantmod和trader的。首先需要明确用户的具体需求。QMT是迅投公司开发的量化交易平台,主要用于A股市场。而quantmod是R语言中一个用于量化金融分析的包,常用于数据获取、可视化和技术分析。用户可能想知道如何将quantmod与QMT结合使用,或者如何在QMT中实现类似quantmod的功能。 需要确认QMT是否支持R语言的集成。查阅资料发现,QMT主要支持Python和VBA,而quantmod是R的包,因此直接集成可能有难度。可能需要通过其他方式在QMT中使用R代码,比如调用外部脚本或者使用中间件进行通信。 接下来,考虑用户提到的“trader”,可能是指实际的交易执行部分。用户可能希望了解如何在QMT中实现策略测和自动化交易。需要查找QMT的API文档,了解其交易函数和测框架的结构。例如,QMT提供XtTrader和XtQuant等模块,用于连接交易接口和数据获取。 然后,整合信息。用户可能需要将quantmod的分析结果应用到QMT的交易策略中。可能的解决方案包括:使用R进行数据分析后导出结果,再用Python读取并执行交易;或者使用Python的类似库(如pandas、TA-Lib)替代quantmod,直接在QMT的策略中实现分析。 此外,需要检查QMT的API是否支持实时数据获取和订单提交。例如,XtQuant提供历史数据获取函数get_market_data,而XtTrader处理订单。代码示例可能涉及初始化交易接口、订阅数据、计算指标、生成交易信号等步骤。 最后,确保答符合格式要求:分步骤、无第一人称、代码和公式正确格式化,并在最后添加相关问题。相关问题应围绕QMT的功能扩展、quantmod替代方案以及策略部署问题展开。</think>QMT(迅投量化交易平台)与quantmod的结合应用涉及数据获取、策略开发和交易执行三个核心环节。以下是实现量化交易的关键方法: --- **数据对接与处理** 通过XtQuant模块获取实时行情数据,使用Python的pandas进行数据处理: ```python from xtquant import xtdata data = xtdata.get_market_data(['000001.SZ'], period='1d') df = data.to_dataframe().reset_index() ``` **技术指标计算** 替代quantmod的技术分析方法,使用TA-Lib实现MACD指标计算: ```python import talib df['macd'], df['signal'], _ = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9) ``` **交易策略实现** 构建双均线策略并通过XtTrader执行: ```python from xtquant.xttrader import XtQuantTrader class Strategy: def on_tick(self): short_ma = df['close'].rolling(5).mean() long_ma = df['close'].rolling(20).mean() if short_ma.iloc[-1] > long_ma.iloc[-1]: XtQuantTrader.order_stock('000001.SZ', 'BUY', 1000) else: XtQuantTrader.order_stock('000001.SZ', 'SELL', 1000) ``` --- **测验证** 使用QMT内置测框架验证策略有效性,核心评价指标包括: - 年化收益率:$R_{annual} = (1 + R_{total})^{252/N} - 1$ - 夏普比率:$Sharpe = \frac{E[R_p - R_f]}{\sigma_p}$ - 最大撤:$MDD = \max_{0≤i<j≤T}(P_i - P_j)/P_i$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值