【自动控制原理】第2章 传递函数的定义,性质,6大典型环节(上海理工大学)


关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

目录

2.4.3 传递函数的性质  

2-6 典型环节及其传递函数

1.比 例环节

2.惯性环节

3.积分环节

4.微分环节

5.二阶振荡环节

6、延迟环节​编辑


微分方程是时域中的数学模型,传递函数是采用L[ ]法求解微分方程时引申出来的复频域中的数学模型,它不仅可以表征系统的动态性能,而且可以用来研究系统的结构和参数变化时对系统性能的影响,是经典控制理论中最重要的模型。

1 定义     在线性定常系统中,当初始条件为零时,系统输出拉氏变换与输入拉氏变换的比,称为传递函数,用G(S)表示。

可见,输入与输出之间的关系仅取决于电路的结构形式及其参数(固有特性),与输入的具体形式无关,无论输入如何,系统都以相同的传递作用输出信息或能量,因此称之为传递函数。    传递函数是代数式,其传递作用还经常用方框图直观的表示:

一般的,设线性定常系统的微分方程式如下,

r为输入量,c为输出量,对两式进行拉式变换得到传递函数

 G(s)是由微分方程经线性拉氏变换得到,故等价,只是把时域变换到复频域而已,但它是一个函数,便于计算和采用方框图表示,广泛应用。    

其分母多项式就是微分方程的特征多项式,决定系统的动态性能。从描述系统的完整性来说,它只能反应零状态响应部分。但在工程实际当中:

1)都是零初始条件的,即系统在输入作用前是相对静止的,即输出量及其各阶导数在t =0的值为零。

2)输入在t =0以后才作用于系统,即输入及其各阶导数在t =0的值为零;                  对于非0初始条件时,可采用叠加原理。

2.4.3 传递函数的性质  

(a)传递函数是一种数学模型,与系统的微分方程相对应。  

(b)传递函数是系统本身的一种属性,与输入量的大小和性质无关。

 (c)传递函数只适用于线性定常系统,因为拉氏变换是一种线性变换。

(d)传递函数描述的是一对确定的变量之间的传递关系,对中间变量不反应。

(e)传递函数是在零初始条件下定义的,因而它不能反映在非零初始条件下系统的运动情况。(零状态解)

(f)传递函数一般为复变量s 的有理分式,它的分母多项式是系统的特征多项式,且阶次总是大于或等于分子多项式的阶次,即n > m。并且所有的系数均为实数。

(g)传递函数与脉冲响应一一对应,是拉氏变换与反变换的关系。

(2)G(s)的微观结构

 G(s)是关于s的有理分式,可分解成多种形式:

1)零极点表达式

其中,kg为根轨迹增益

       可知:传递函数定,零、极点和kg唯一确定,反之亦然。因此传递函数可用零极点和传递系数等价表示。    

      零极点既可以是实数,也可以是复数,表示在复平面上,形成的图称传递函数的零、极点分布图。反映系统的动态性能。因此对系统的研究,可变成对系统传函的零、极点的研究了,这就是根轨迹法(chaper4)。

   例如,试画出下面传递函数的零极点图。

 2)时间常数表达式

较容易分解成一些典型环节,chapter5 应用

2-6 典型环节及其传递函数

自动控制系统可以用传递函数来描述,任一复杂的传递函数G(s),都可表示为:

可看成是若干称为典型环节的基本因子的乘积,一般认为典型环节有6种,这些典型环节,对应典型电路。这样划分对系统分析和研究带来很大的方便。     分述如下:

1.比 例环节

(杠杆,齿轮系,电位器,变压器等)  

运动方程式    c(t) = K r(t)  

传递函数      G(s) = K  

单位阶跃响应  C(s) = G(s) R(s) = K/s                                

c(t) = K1(t)    

可见,当输入量r(t)=1(t)时,

输出量c(t)成比例变化。

2.惯性环节

由微分方程式可以得到传递函数

3.积分环节

当输入阶跃函数时,该环节的输出随时间直线增长,增长速度由1/T决定。当输入突然除去,积分停止,输出维持不变,故有记忆功能。

4.微分环节

由于阶跃信号在时刻t = 0有一跃变,其他时刻均不变化,所以微分环节对阶跃输入的响应只在t = 0时刻产生一个响应脉冲。

5.二阶振荡环节

由微分方程式得到传递函数,振荡环节有一对位于s左半平面的共轭极点。

得到二阶振荡环节的阶跃响应曲线,分析动态性能。

6、延迟环节

他的微分方程式,传递函数,单位阶跃响应如上



关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迦勒底御主Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值