基本控制环节的幅频和相频特性
在控制系统中,不同类型的控制环节具有各自独特的动态特性。为了研究这些环节对信号的影响,通常需要分析其频率响应特性,即幅频特性和相频特性。以下对几种常见的基本控制环节进行逐一分析。
1. 比例环节
比例环节的传递函数可以表示为:
G ( s ) = K G(s) = K G(s)=K
其中, K K K 为比例增益。比例环节的幅频特性与频率无关,其幅值始终为 K K K,即:
∣ G ( j ω ) ∣ = K |G(j\omega)| = K ∣G(jω)∣=K
相位特性同样为一个常数,为 0 ∘ 0^\circ 0∘,即:
φ ( ω ) = 0 ∘ \varphi(\omega) = 0^\circ φ(ω)=0∘
比例环节对输入信号的频率不敏感,无相位滞后或超前,其作用是单纯对输入信号进行放大或缩小。
2. 积分环节
积分环节的传递函数为:
G ( s ) = K s G(s) = \frac{K}{s} G(s)=sK
其幅频特性表现为幅值随频率增大而减小:
∣ G ( j ω ) ∣ = K ω |G(j\omega)| = \frac{K}{\omega} ∣G(jω)∣=ωK
相频特性为固定的滞后 9 0 ∘ 90^\circ 90∘:
φ ( ω ) = − 9 0 ∘ \varphi(\omega) = -90^\circ φ(ω)=−90∘
积分环节对高频信号具有较强的衰减作用,常用于消除系统的稳态误差,但可能引入一定的相位滞后。
3. 微分环节
微分环节的传递函数为:
G ( s ) = K s G(s) = Ks G(s)=Ks
其幅频特性与频率成正比: