【智能控制】第2章 模糊控制的理论基础,典型隶属函数,设计模糊系统,模糊关系运算(北京航天航空大学)

 


关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

我在上面讲课哦

目录

智能控制的几个重要分支:模糊控制     

2.1 概述——模糊控制的提出        

2.3  隶属函数

2 几种典型的隶属函数      

(1)高斯型隶属函数

(2) 广义钟型隶属函数        

(3) S形隶属函数        

(4)梯形隶属函数          

(5)三角形隶属函数          

(6)Z形隶属函数      

例2.5  

图2-2   高斯型隶属函数(M=1)

图2-3  广义钟形隶属函数(M=2)

图2-4  S形隶属函数(M=3)

图2-5 梯形隶属函数(M=4)

图 2-6 三角形隶属函数(M=5)

图2-7  Z形隶属函数(M=6)​编辑

图2-8  三角形隶属函数曲线

3 模糊系统的设计

4  隶属函数的确定方法

(1)模糊统计法

(2)主观经验法    

(3)神经网络法    

2.4  模糊关系及其运算

2.4.1 模糊矩阵

例2.6  

2.4.2 模糊矩阵运算与模糊关系     

例2.7  

2.4.3 模糊矩阵的合成     

2.5  模糊推理

2.5.1 模糊语句

2.5.2 模糊推理

​编辑​编辑例2.10  

2.5.3 模糊关系方程

1、模糊关系方程概念   


智能控制的几个重要分支:模糊控制
     

   以往的各种传统控制方法均是建立在被控对象精确数学模型基础上的,然而,随着系统复杂程度的提高,将难以建立系统的精确数学模型。    

        在工程实践中,人们发现,一个复杂的控制系统可由一个操作人员凭着丰富的实践经验得到满意的控制效果。这说明,如果通过模拟人脑的思维方法设计控制器,可实现复杂系统的控制,由此产生了模糊控制。

      1965年美国加州大学自动控制系L.A.Zedeh提出模糊集合理论,奠定了模糊控制的基础;1974年伦敦大学的Mamdani博士利用模糊逻辑,开发了世界上第一台模糊控制的蒸汽机,从而开创了模糊控制的历史;1983年日本富士电机开创了模糊控制在日本的第一项应用—水净化处理,之后,富士电机致力于模糊逻辑元件的开发与研究,并于1987年在仙台地铁线上采用了模糊控制技术,1989年将模糊控制消费品推向高潮,使日本成为模糊控制技术的主导国家。

         基于模糊控制的发展可分为三个阶段:

(1)1965年-1974年为模糊控制发展的第一阶段,即模糊数学发展和形成阶段;

(2)1974年-1979年为模糊控制发展的第二阶段,产生了简单的模糊控制器;

(3)1979年—现在为模糊控制发展的第三阶段,即高性能模糊控制阶段。    

          模糊逻辑控制器的设计不依靠被控对象的模型,但它却非常依靠控制专家或操作者的经验知识。模糊逻辑控制的突出优点是能够比较容易地将人的控制经验溶入到控制器中,但若缺乏这样的控制经验,很难设计出高水平的模糊控制器。    

     采用模糊系统可充分逼近任意复杂的非线性系统,基于模糊系统逼近的自适应模糊控制是模糊控制的更高形式。

2.1 概述——模糊控制的提出  
   
   

以往的各种传统控制方法均是建立在被控对象精确数学模型基础上的,然而,随着系统复杂程度的提高,将难以建立系统的精确数学模型。      

     在工程实践中,人们发现,一个复杂的控制系统可由一个操作人员凭着丰富的实践经验得到满意的控制效果。这说明,如果通过模拟人脑的思维方法设计控制器,可实现复杂系统的控制,由此产生了模糊控制。

       模糊控制是建立在人工经验基础之上的。对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程。若能将这些熟练操作员的实践经验加以总结和描述,并用语言表达出来,就会得到一种定性的、不精确的控制规则。如果用模糊数学将其定量化就转化为模糊控制算法,形成模糊控制理论。

   模糊控制理论具有一些明显的特点:

(1)模糊控制不需要被控对象的数学模型。模糊控制是以人对被控对象的控制经验为依据而设计的控制器,故无需知道被控对象的数学模型。

(2)模糊控制是一种反映人类智慧的智能控制方法。模糊控制采用人类思维中的模糊量,如“高”、“中”、“低”、“大”、“小”等,控制量由模糊推理导出。这些模糊量和模糊推理是人类智能活动的体现。

(3)模糊控制易于被人们接受。模糊控制的核心是控制规则,模糊规则是用语言来表示的,如“今天气温高,则今天天气暖和”,易于被一般人所接受。

(4)构造容易。模糊控制规则易于软件实现。

(5)鲁棒性和适应性好。通过专家经验设计的模糊规则可以对复杂的对象进行有效的控制。

2.3  隶属函数

2 几种典型的隶属函数      

           在Matlab中已经开发出了11种隶属函数,即双S形隶属函数(dsigmf)、联合高斯型隶属函数(gauss2mf)、高斯型隶属函数(gaussmf)、广义钟形隶属函数(gbellmf)、II型隶属函数(pimf)、双S形乘积隶属函数(psigmf)、S状隶属函数(smf)、S形隶属函数(sigmf)、梯形隶属函数(trapmf)、三角形隶属函数(trimf)、Z形隶属函数(zmf)。

(1)高斯型隶属函数

(2) 广义钟型隶属函数        

广义钟型隶属函数由三个参数a,b,c确定:

其中参数a和b通常为正,参数c用于确定曲线的中心。Matlab表示为

(3) S形隶属函数        

S形函数sigmf(x,[a c])由参数a和c决定:

其中参数a的正负符号决定了S形隶属函数的开口朝左或朝右,用来表示“正大”或“负大”的概念。Matlab表示为

(4)梯形隶属函数          

梯形曲线可由四个参数a,b,c,d确定:

其中参数a和d确定梯形的“脚”,而参数b和c确定梯形的“肩膀”。 Matlab表示为:

(5)三角形隶属函数          

三角形曲线的形状由三个参数a,b,c确定:

其中参数a和c确定三角形的“脚”,而参数b确定三角形的“峰”。 Matlab表示为

(6)Z形隶属函数      

这是基于样条函数的曲线,因其呈现Z形状而得名。参数a和b确定了曲线的形状。Matlab表示为

有关隶属函数的MATLAB设计,见著作:

楼顺天,胡昌华,张伟,基于MATLAB的系统分析与设计-模糊系统,西安:西安电子科技大学出版社,2001

例2.5  

隶属函数的设计:针对上述描述的6种隶属函数进行设计。M为隶属函数的类型,其中M=1为高斯型隶属函数,M=2为广义钟形隶属函数,M=3为S形隶属函数,M=4为梯形隶属函数,M=5为三角形隶属函数,M=6为Z形隶属函数。如图所示。

图2-2   高斯型隶属函数(M=1)

图2-3  广义钟形隶属函数(M=2)

图2-4  S形隶属函数(M=3)

图2-5 梯形隶属函数(M=4)

图 2-6 三角形隶属函数(M=5)

图2-7  Z形隶属函数(M=6)

图2-8  三角形隶属函数曲线

3 模糊系统的设计

例1:设计一个三角形隶属函数,按[-3,3]范围七个等级,建立一个模糊系统,用来表示{负大,负中,负小,零,正小,正中,正大}。仿真结果如图3-8所示。

例2:设计评价一个学生成绩的隶属函数,在[0,100]之内按A、B、C、D、E分为五个等级,即{不及格,及格,中,良,优}。分别采用五个高斯型隶属函数来表示,建立一个模糊系统,仿真结果如图2-9所示。

图2-9 高斯型隶属函数曲线

4  隶属函数的确定方法

隶属函数是模糊控制的应用基础。目前还没有成熟的方法来确定隶属函数,主要还停留在经验和实验的基础上。通常的方法是初步确定粗略的隶属函数,然后通过“学习”和实践来不断地调整和完善。遵照这一原则的隶属函数选择方法有以下几种。

(1)模糊统计法

   根据所提出的模糊概念进行调查统计,提出与之对应的模糊集A,通过统计实验,确定不同元素隶属于A的程度。

u0对模糊集A的隶属度 =                  

(2)主观经验法    

当论域为离散论域时,可根据主观认识,结合个人经验,经过分析和推理,直接给出隶属度。这种确定隶属函数的方法已经被广泛应用。

(3)神经网络法    

利用神经网络的学习功能,由神经网络自动生成隶属函数,并通过网络的学习自动调整隶属函数的值。

2.4  模糊关系及其运算

2.4.1 模糊矩阵

例2.6  

设有一组同学X,X={张三,李四,王五},他们的功课为Y,Y={英语,数学,物理,化学}。他们的考试成绩如下表:

表2-2   考试成绩表

取隶属函数,其中u为成绩。如果将他们的成绩转化为隶属度,则构成一个x×y上的一个模糊关系R,见下表。

表2-3 考试成绩表的模糊化

    将上表写成矩阵形式,得:

    该矩阵称作模糊矩阵,其中各个元素必须在[0,1]闭环区间上取值。矩阵R也可以用关系图来表示,如图2-10所示。

2.4.2 模糊矩阵运算与模糊关系     

     设有n阶模糊矩阵A和B,,且。则定义如下几种模糊矩阵运算方式:

例2.7  

2.4.3 模糊矩阵的合成     

      所谓合成,即由两个或两个以上的关系构成一个新的关系。模糊关系也存在合成运算,是通过模糊矩阵的合成进行的。

   和 分别为 和 上的模糊关系,而 和 的合成是 上的模糊关系,记为 ,其隶属函数为

例 2.8  设 ,则A和B的合成为:

例2.9

某家中子女和父母的长相“相似关系”R 为模糊关系,可表示为用模糊矩阵 R表示为

该家中,父母与祖父的“相似关系” S也是模糊关系,可表示为

用模糊矩阵 S表示为

    那么在该家中,孙子、孙女与祖父、祖母的相似程度应该如何呢?        

模糊关系的合成运算就是为了解决诸如此类的问题而提出来的。针对此例,模糊关系的合成运算为

该结果表明,孙子与祖父、祖母的相似程度分别为0.2和0.2,而孙女与祖父、祖母的相似程度分别为0.5和0.6.

2.5  模糊推理

2.5.1 模糊语句

   将含有模糊概念的语法规则所构成的语句称为模糊语句。根据其语义和构成的语法规则不同,可分为以下几种类型:

(1)模糊陈述句:语句本身具有模糊性,又称为模糊命题。如:“今天天气很热”。

(2)模糊判断句:是模糊逻辑中最基本的语句。语句形式:“x是a”,记作(a),且a所表示的概念是模糊的。如“张三是好学生”。

(3)模糊推理句:语句形式:若x是a,则x是b。则为模糊推理语句。如“今天是晴天,则今天暖和”。

2.5.2 模糊推理

     常用的有两种模糊条件推理语句:If A then B else C;If A AND B then C     下面以第二种推理语句为例进行探讨,该语句可构成一个简单的模糊控制器,如图2-11所示。

图2-11 二输入单输出模糊控制器

   其中A,B,C分别为论域U上的模糊集合,A为误差信号上的模糊子集,B为误差变化率上的模糊子集,C为控制器输出上的模糊子集。

例2.10  

    设论域x={a1,a2,a3},y={b1,b2,b3},z={c1,c2,c3},已知  ,。试确定“If A AND B then C”所决定的模糊关系R,以及输入为, 时的输出C1。

将A×B矩阵扩展成如下列向量:

当输入为A1和B1时,有

将A1×B1矩阵扩展成如下行向量:

最后得:

即:

2.5.3 模糊关系方程

1、模糊关系方程概念   

 将模糊关系R看成一个模糊变换器。当A为输入时,B为输出,如图2-12所示。

图2-12   模糊变换器

 可分为两种情况讨论:

(1)已知输入A和模糊关系R,求输出B,这是综合评判,即模糊变换问题。

(2)已知输入A和输出B,求模糊关系R,或已知模糊关系R和输出B,求输入A,这是模糊综合评判的逆问题,需要求解模糊关系方程。

2、模糊关系方程的解     近似试探法是目前实际应用中较为常用的方法之一。


 上理考研周导师的哔哩哔哩频道

我在上面讲课哦

资料仅供学习使用

如有错误欢迎留言交流

上理考研周导师的其他专栏:

光电融合集成电路技术

C语言

单片机原理

模式识别原理

数字电子技术

自动控制原理     ​​​​​​ 传感器技术

模拟电子技术

数据结构

 概率论与数理统计

高等数学

传感器检测技术

智能控制

嵌入式系统

图像处理与机器视觉

热工与工程流体力学

数字信号处理

线性代数

工程测试技术

上理考研周导师了解更多

在使用模糊逻辑进行优化时,隶属度函数的参数是很关键的。MATLAB提供了一些工具和方法来帮助我们优化隶属度函数参数。 首先,我们可以使用MATLAB中的模糊逻辑工具箱。该工具箱提供了一系列的函数和命令来创建和操作模糊逻辑系统。我们可以使用命令fisedit来打开一个交互式的界面来创建和编辑模糊逻辑系统。在这个界面中,我们可以定义模糊逻辑系统的输入和输出,并设置隶属度函数的参数。通过编辑界面中的参数,我们可以手动调整和优化隶属度函数的参数,以使其更准确地描述问题。 另外,MATLAB还提供了一些优化算法,如遗传算法、粒子群算法等,可以用于优化隶属度函数的参数。这些算法可以通过多次迭代和评估来寻找最优的参数。我们可以使用MATLAB中的优化工具箱来实现这些优化算法。通过设置目标函数和约束条件,我们可以将优化过程与隶属度函数的参数关联起来,并使用优化算法找到最优的参数组合。 此外,我们还可以使用数据驱动的方法来优化隶属度函数的参数。通过收集和分析与问题相关的数据,我们可以通过拟合数据来估计隶属度函数的参数。通过与实际数据的比较,我们可以不断调整和优化参数,以使模糊逻辑系统更好地适应实际问题。 总之,MATLAB提供了多种方法和工具来优化隶属度函数的参数。我们可以手动调整参数,使用优化算法或数据驱动的方法,以达到更好地描述和解决问题的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值