多面集的表示定理的必要性的证明

本文详细证明了多面集的表示定理的必要性,分为有界和无界两种情况讨论。通过归纳法证明了在有界情况下,任何元素可以表示为极点的凸组合,并在无界情况下,利用有界子集的性质推导出相同结论,从而证实了表示定理的必要性。
摘要由CSDN通过智能技术生成

多面集的表示定理的必要性的证明

前面的内容见 多面集的表示定理

4.2 必要性

4.2.1 有界情况下

S S 有界,由于有界集没有方向,因此只要证明:
X S , X X 可以被表示成 X 1 , , X k 的凸组合。
即存在集合 { λiR:i=1kλi=1,λi0,iN,1ik} { λ i ∈ R : ∑ i = 1 k λ i = 1 , λ i ≥ 0 , i ∈ N , 1 ≤ i ≤ k } , 使得: X=i=1kλiXi X = ∑ i = 1 k λ i X i

下面用归纳法证明: lN, ∀ l ∈ N , 若存在 XS, X ∈ S , 使得 ϕ(X)=nl, ϕ ( X ) = n − l , X X 可以被表示成 X 1 , , X k 的凸组合。
1) l=0 l = 0 ϕ(X)=n ϕ ( X ) = n ,则 X X S 的一个极点,即存在 iN,1ik, i ∈ N , 1 ≤ i ≤ k , 使得 X=Xi, X = X i , 则命题显然成立。
2) 假设 lL(LN) l ≤ L ( L ∈ N ) 时成立,则 l=L+1 l = L + 1 时,
Ln, L ≥ n , nl=n(L+1)1<0, n − l = n − ( L + 1 ) ≤ − 1 < 0 , 由于 XS,ϕ(X)0 ∀ X ∈ S , ϕ ( X ) ≥ 0 ,因此不存在 XS, X ∈ S , 使得 ϕ(X)=nl, ϕ ( X ) = n − l , 因此命题成立。
否则, 0L<n 0 ≤ L < n ,则 ϕ(X)=nl=n(L+1)=n1L[0,n1], ϕ ( X ) = n − l = n − ( L + 1 ) = n − 1 − L ∈ [ 0 , n − 1 ] , 由于 S S 有界,根据多面集的点的性质1
X 1 , X 2 S , 使得 ϕ(X1),ϕ(X2)ϕ(X)+1=n(L+1)+1=nL, ϕ ( X 1 ) , ϕ ( X 2 ) ≥ ϕ ( X ) + 1 = n − ( L + 1 ) + 1 = n − L ,
存在 λ,μ>0,λ+μ=1 λ , μ > 0 , λ + μ = 1 使得 X=λX1+μX2 X = λ X 1 + μ X 2
nϕ(X1)L,nϕ(X2)L, n − ϕ ( X 1 ) ≤ L , n − ϕ ( X 2 ) ≤ L ,
由归纳假设, X1,X2 X 1 , X 2 可以被表示成 X1,,Xk X 1 , ⋯ , X k 的凸组合。 即:
存在集合 { uiR:i=1kui=1,ui0,iN,1ik} { u i ∈ R : ∑ i = 1 k u i = 1 , u i ≥ 0 , i ∈ N , 1 ≤ i ≤ k } , 使得: X1=i=1kuiXi X 1 = ∑ i = 1 k u i X i
存在集合 { viR:i=1kvi=1,vi0,iN,1ik} { v i ∈ R : ∑ i = 1 k v i = 1 , v i ≥ 0 , i ∈ N , 1 ≤ i ≤ k } , 使得: X2=i=1kviXi X 2 = ∑ i = 1 k v i X i

X=λX1+μX2=λi=1kuiXi+μi=1kviXi=i=1k(λui+μvi)Xi X = λ X 1 + μ X 2 = λ ∑ i = 1 k u i X i + μ ∑ i = 1 k v i X i = ∑ i = 1 k ( λ u i + μ v i ) X i
其中 i=1k(λui+μvi)=λi=1kui+μi=1kvi=λ+μ=1,

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值