langchain chroma 与 chromadb笔记

chromadb可独立使用也可搭配langchain 框架使用。

环境:

        python 3.9

        langchain=0.2.16

        chromadb=0.5.3

chromadb 使用示例

import chromadb
from chromadb.config import Settings
from chromadb.utils import embedding_functions


# 加载embedding模型
en_embedding_name = "/home/model/peft_prac/all-MiniLM-L6-v2"  
ef = embedding_functions.SentenceTransformerEmbeddingFunction(
 en_embedding_name, "cuda:2", True
 )

# 实例化chromadb,添加一个collection
collection_first = 'coll_1st'
client_test = chromadb.Client()
collection = client_test.create_collection(name=collection_first, embedding_function=ef) 


# 添加数据三元组,list类型
collection.add(
    documents=["it's an apple", "this is a book"], 
    metadatas=[{"source": "t4"},  {"source": "t5"}], 
    ids=["id4",  "id5"])

## 统计collection的items数量
collection.count()

# 查找数据
coll2 = client_test.get_collection(collection_first)
print('check_collection',  coll2.peek(1)) # 取出第一个数据,此时embedding有值
print('check_collection',  coll2.get(ids=["id4"])) # 选择第一个数据,此时embedding无值
collection = client.get_or_create_collection("testname") # 有则获取,无则创建

# 更新数据
collection.upsert(
    ids=["id4", ...],
    embeddings=[[1.1, 2.3, 3.2], ...], #非必须
    metadatas=[{"chapter": "3", "verse": "16"} ...],
    documents=["it's a book", ...],
)

# 使用embedding 检索

collection.query(
    query_embeddings=[[1.1, 2.3, 3.2]],
    n_results=1,
    where={"style": "style2"}
)

# 使用text 检索(使用更新前的数据检索),distance越小,语义越接近
print('chromadb_search', coll2.query(query_texts="it's a book", n_results=2))
output:
chromadb_search {'ids': [['id5', 'id4']], 'distances': [[0.3473210334777832, 1.2127960920333862]], 'metadatas': [[{'source': 't5'}, {'source': 't4'}]], 'embeddings': None, 'documents': [['this is a book', "it's an apple"]], 'uris': None, 'data': None, 'included': ['metadatas', 'documents', 'distances']}

# 使用text 检索(使用更新后的数据检索),注意:本体检索,distance 却不是1
print('chromadb_search', coll2.query(query_texts="it's a book", n_results=1))
output:
chromadb_search {'ids': [['id4']], 'distances': [[1.168771351402198e-12]], 'metadatas': [[{'info': 'new data', 'source': 't4'}]], 'embeddings': None, 'documents': [["it's a book"]], 'uris': None, 'data': None, 'included': ['metadatas', 'documents', 'distances']}

        chromdb 可以使用多个collection

langchain chroma 使用示例

import chromadb
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain_chroma import Chroma


# 加载embedding 模型, 不推荐使用embedding_functions.SentenceTransformerEmbeddingFunction
# 这种embedding 不支持使用db.add_documents() 和 db.similarity_search(),用着不方便
en_embedding_name = "/home/zmh/peft_prac/all-MiniLM-L6-v2"  
embeddings = HuggingFaceEmbeddings(
    model_name = en_embedding_name,
    model_kwargs={"device": "cuda:1"}
)

# 创建db, 还可以在本地保存db,如果路径中有数据,会在实例化中加载数据
# collection_name:若存在则可使用其中数据,不存在会新建。会作为db 的默认collection
collection_test = 'llama2_demo'
db = Chroma(
    client=client_test, # 可以不指定client
    collection_name=collection_test,
    embedding_function=embeddings, 
    persist_directory='db/'
)

# 基本数据信息
student_info = "Alexandra Thompson, a 19-year-old computer science sophomore with a 3.7 GPA, is a member of the programming and chess clubs who enjoys pizza, swimming, and hiking in her free time in hopes of working at a tech company after graduating from the University of Washington."

club_info = "The university chess club provides an outlet for students to come together and enjoy playing the classic strategy game of chess. Members of all skill levels are welcome, from beginners learning the rules to experienced tournament players. The club typically meets a few times per week to play casual games participate in tournaments, analyze famous chess matches, and improve members' skills."

university_info = "The University of Washington, founded in 1861 in Seattle, is a public research university with over 45,000 students across three campuses in Seattle, Tacoma, and Bothell. "As the flagship institution of the six public universities in Washington state, UW encompasses over 500 buildings and 20 million square feet of space, including one of the largest library systems in the world."


texts_org = [student_info, club_info, university_info]
text_meta = [{"source": 'student_info'},  {"source": 'club_info'},  {"source": 'university_info'}]
text_ids = ['101',  '102',  '103']

# 处理数据,
text_splitter = CharacterTextSplitter(separator='.', chunk_size=1000, chunk_overlap=0)
texts_doctment = text_splitter.create_documents(texts_org, metadatas=text_meta)
# 添加数据
db.add_documents(texts_doctment, ids=text_ids)

#查询数据
coll = db._collection
print('coll', type(coll), coll.name, coll.metadata)
output:
coll <class 'chromadb.api.models.Collection.Collection'> llama2_demo None
print('sample of db_info',  coll.peek(1)) # 获取第一个数据
print("collection_info", coll.get()) # 获取整个集合的数据


#检索数据,返回的是直接的document 信息,没有distance 分数
res = db.similarity_search("What is the student name?", k=2)
print('res',  res)
output:
res [Document(metadata={'source': 'student_info'}, page_content='Alexandra Thompson, a 19-year-old computer science sophomore with a 3.7 GPA, is a member of the programming and chess clubs who enjoys pizza, swimming, and hiking in her free time in hopes of working at a tech company after graduating from the University of Washington'), Document(metadata={'source': 'club_info'}, page_content="The university chess club provides an outlet for students to come together and enjoy playing the classic strategy game of chess. Members of all skill levels are welcome, from beginners learning the rules to experienced tournament players. The club typically meets a few times per week to play casual games participate in tournaments, analyze famous chess matches, and improve members' skills")]


        chroma 一个实例对象就一个collection

chroma 保存和加载模型

# 保存到磁盘

db2 = Chroma.from_documents(docs, embedding_function, persist_directory="./chroma_db")

docs = db2.similarity_search(query, k=1)

 

# 从磁盘加载

db3 = Chroma(persist_directory="./chroma_db", embedding_function=embedding_function)

docs = db3.similarity_search(query, k=1)

参考

ChromaDB python 使用教程及记录 - 知乎

2 langchain chromadb 的部分信息参考某个博客,忘了,待补充

### 如何在 ChromaDB 中创建和使用自定义 Embedding 方法 为了实现在 ChromaDB 中创建并使用自定义 embedding 方法,可以遵循如下方法: #### 定义自定义 Embedding 函数 首先,需要编写一个函数来生成所需的向量表示。这个函数应该接受文本输入,并返回对应的嵌入向量。 ```python def custom_embedding(texts): embeddings = [] for text in texts: # 这里放置具体的编码逻辑,比如调用预训练模型或其他算法 embedding_vector = ... # 计算得到的嵌入向量 embeddings.append(embedding_vector) return embeddings ``` #### 集成到 ChromaDB 的工作流中 一旦有了上述自定义的 embedding 函数,在将其集成至 ChromaDB 工作流程时,则需指定此函数作为参数传递给 `Chroma` 类实例化过程中的 `embedding_function` 参数[^4]。 ```python from chromadb.utils.embedding_functions import CustomEmbeddingFunction custom_ef = CustomEmbeddingFunction(custom_embedding) vectordb = Chroma( collection_name="my_collection", embedding_function=custom_ef, persist_directory="/path/to/db" ) ``` 通过这种方式,就可以利用自定义的方法来进行文档或查询字符串的嵌入计算,并将结果保存于 ChromaDB 数据库存储之中。 #### 存储持久化设置 对于希望长期保留的数据集来说,还需要考虑如何安全地存储这些信息以便后续访问。这可以通过配置 `persist_directory` 来实现,指明文件系统的某个路径用于存放数据库文件。 ```python # 持久化操作确保数据被写入磁盘 vectordb.persist() ``` 以上步骤展示了怎样在一个完整的项目环境中加入个性化的 embedding 方案,从而更好地满足特定应用场景下的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值