本篇开始进行向量代数和空间解析几何的内容的总结。
一、定义
-
向量:既有大小又有方向的量称为向量,又叫矢量。
向量由大小(长度)和方向唯一确定的,与起点和位置无关,这样的向量称为自由向量。 -
向量相等:向量相等有两个条件,大小(长度)相等,方向相同。
-
向量的模
-
向量的夹角
二、向量的线性运算
- 向量加法
①平行四边形法则
如图,两个向量相加,做两个向量的平行向量组成平行四边形,即可得到结果向量
②三角形法则
从向量OA起点指向向量AB终点的向量即为两个向量之和
向量加法的符合加法交换律,这里就不说了,中学知识。
-
向量减法
从减向量终点指向被减向量终点的向量即为二者之差 -
数与向量的乘法
三、空间直角坐标系
第Ⅰ卦限:x>0;y>0;z>0
第Ⅱ卦限:x<0;y>0;z>0
第Ⅲ卦限:x<0;y<0;z>0
第Ⅳ卦限:x>0;y<0;z>0
第Ⅴ卦限:x>0;y>0;z<0
第Ⅵ卦限:x<0;y>0;z<0
第Ⅶ卦限:x<0;y<0;z<0
第Ⅷ卦限:x>0;y<0;z<
四、向量线性运算的代数描述
五、向量的模、方向角与方向余弦、投影
- 向量的模,即为向量的长度
参考上图可得,向量的模为分量的平方和开根号。
两点之间的距离,实际上也就是两点所成向量的模长。
- 方向角与方向余弦
a向量与x、y、z轴的正方向的夹角称为向量a的方向角,记作α、β、γ
称cos α、cos β、cos γ 为a向量的方向余弦
例1
本篇完。