Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks解读

研究者提出了ODIN,一种无需改变预先训练的神经网络就能增强分布外图像检测有效性的方法。通过温度缩放和输入扰动,ODIN能更好地分离分布内和分布外图像的softmax分数,降低误报率,提高检测性能。在多个网络结构和数据集上,ODIN表现出优越的性能,建立了新的SOTA标准。
摘要由CSDN通过智能技术生成

[40]Liang S, Li Y, Srikant R. Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks[C]//International Conference on Learning Representations. 2018.

1.摘要

1.1问题:我们考虑了在神经网络中检测分布外图像的问题。

1.2方法:我们提出了ODIN,这是一种简单有效的方法,不需要对预先训练的神经网络进行任何改变。

1.3动机:我们的方法是基于这样的观察:使用温度缩放和向输入添加小的扰动可以分离分布内和分布外图像之间的softmax分数分布,从而实现更有效的检测。

1.4结果:我们在一系列的实验中表明,ODIN与不同的网络结构和数据集兼容。它始终比基线方法(Hendrycks & Gimpel, 2017)有很大的优势,在这个任务上建立了一个新的最先进的性能。例如,ODIN在DenseNet(应用于CIFAR-10和Tiny-ImageNet)上的假阳性率从基线的34.7%降低到4.3%,而真实阳性率为95%。

2.引言

​2.1背景与现存问题:

  1. 众所周知,当训练和测试数据从相同的分布中取样时,现代神经网络具有良好的泛化能力(Krizhevsky等人,2012;Simonyan和Zisserman,2015;He等人,2016;Cho等人,2014;张等人,2017)。然而,在现实世界的应用中部署神经网络时,对测试数据分布的控制往往非常少。最近的工作表明,即使对于完全无法识别的(Nguyen等人,2015)或不相关的输入,神经网络也倾向于做出高置信度的预测(Hendrycks & Gimpel,2017;Szegedy等人,2014;Moosavi-Dezfooli等人,2017)。
  2. 有资料显示(Amodei等人,2016),当显示新种类的输入,即分布外的例子时,分类器意识到不确定性是很重要的。因此,能够准确地检测出分布外的例子对于视觉识别任务是非常重要的(Krizhevsky等人,2012;Farabet等人,2013;Ji等人,2013)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值