cs231n-assignment2-Batch Normalization原理推导

本文探讨Batch Normalization在深度学习中的作用,它通过预处理技术确保每层网络输入的标准化,提高网络训练稳定性。内容包括算法介绍、前向传播、反向传播的细节,并提供了一个作业代码链接。
摘要由CSDN通过智能技术生成

做作业的时候敲BN调了很久,当时就写了博客忘记放上来了。。。

assignment2 完整代码链接:http://download.csdn.net/download/pjia_1008/9892859

Batch Normalization 可以理解为是一种数据预处理技术,使得每层网络的输入都服从(0,1)0均值,1方差分布,如果不进行BN,那么每次输入的数据分布不一致,网络训练精度自然也受影响。


1,Batch Normalization算法

这里写图片描述

针对每个batch, 先要求出这个batch的均值和方差,然后normalize(这里感觉很像非标准正态转化成标准正态的计算方法)

因为我们前面计算均值和方差的时候,用的是batch来算的,所以这个计算的均值和方差对整体训练样本不适用,需要进行放缩到原始样本的比例,所以最后进行了scale and shift(这里有两个hyper parameter是通过训练得到)完整的计算图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值