Instant-NGP稿子

Instant-NGP是一种使用哈希编码的多分辨率神经图形技术,能在短时间内生成高质量图像。该方法通过不同分辨率等级的哈希表捕获特征,利用小规模网络处理哈希特征。在可能出现的哈希冲突问题上,Instant-NGP依赖神经网络的梯度优化来解决。实验表明,这种方法在训练速度上优于其他技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Instant-NGP是英伟达2022年发表的一篇论文,全称是使用哈希编码的多分辨率的即时神经图形原语

那这篇文章呢

这篇文章提出了一种对输入做哈希encoding的方式,来让很小的网络也能学到很高的质量。

这个图片是文中的一个图片,表现了可以在训练很短的时间内就将图像表现得很清晰

那么这些输入的特征怎么去得到得呢?就是用到了一个多分辨率哈希编码,我们可以结合下面的参数来看

这个L表示具有多少分辨率等级,图中只画出了两个等级,就是L=0和L=1,那么具体到实际中的是16个等级,然后每一个等级的时候其实对应一个哈希表,具体有多少项就是用T表示(可以理解为哈希表的表长这里是214到220),然后每一项特征的维度是多少使用F表示,这里就是F=2

下面的Nmin和Nmax在代码里也是固定值;这两个表示最小分辨率和最大分辨力
这两个值就确定了在这个分辨率下,我要将这图片分为多少个网格

然后我们再来看他是如何得到哈希特征的,首先这个点我们可以计算他在哪些方格当中,那他落在这两个之中就对应了不同的等级

在L=1这个登记下我们去计算他的哈希特征。首先我们会将这四个顶点进行一个哈希映射,得到一个哈希索引就是0 2 3 6,然后我们再去对应的哈希表中去找相应的哈希特征,然后我们再用双线性插值的方法得到这个点的哈希特征

对于每一个等级下都会得到一个F=2的哈希特征,最终通过多分辨率哈希编码以后最终得到的就是16*2的哈希特征,此外还有一个辅助特征进行一个拼接,最后再送入到这个比较小的哈希网络中

2^14对于比较小的level的话,网格的数量小于T,那就不会发生哈希冲突
但是在比较精细的level下,比如这个最大分辨率,那么网格的总数可能会大于table length,那有可能发生哈希冲突,索引到相同的value值,发生哈希碰撞,但是作者没有在代码层面设计处理这个哈希碰撞,因为在神经网络的训练中,可以让神经网络来处理这个哈希碰撞。
靠梯度来进行哈希表参数的优化。
如果两个点索引到同一个位置发生了冲突,因为n3上的立方上的场景中的值是没有意义的,物体表面n2是有意义的,因此在n^2点位上的梯度是有价值的,在空的点位上的值是没有价值的,这样表面上点的梯度就会站指导地位,把冲突解决掉

也就是表面上的点会更强烈的促进网络的更新
在这里插入图片描述

比如说 这里的2的14和2的19,他的迭代时间差的不是特别的大,但是性能的话会好一些,但如果更新到21的话,意味着这个table会很长,那这个值得更改就会比较漫长,那么时间就会久一些,性能也会提升一些

这里面两种是两个数据集

另一个是F得实验
在这里插入图片描述

这个表对比了他们得实验以及另外三种实验,这八个是数据集得实验结果
这里面金色得话就是金牌得意思

主要是这里的训练速度上是远远好于其他方式得
在这里插入图片描述

### Instant-NGP 和 NeRF 的对比与关系 #### 背景介绍 Neural Radiance Fields (NeRF) 是一种基于神经网络的方法,用于从多视角图像合成高质量的三维场景渲染效果[^1]。它通过优化一个连续的体积密度场和辐射场来实现逼真的视图合成。然而,NeRF 存在一些局限性,例如训练时间较长、内存消耗大以及对高频细节处理不够理想等问题。 Instant Neural Graphics Primitives (Instant-NGP) 则是一种改进版方法,旨在解决上述问题并提升效率。Instant-NGP 使用了一种混合表示法——结合了哈希编码(hash encoding)和多层感知机(MLP),从而显著提高了模型的学习速度和推理性能[^4]。 --- #### 主要差异分析 ##### 1. **计算效率** Instant-NGP 显著提升了训练和推断的速度。相比于传统的 NeRF 方法可能需要数小时甚至更长时间才能完成单个场景的训练,Instant-NGP 可以在几秒钟到几分钟内达到相似的效果。这是由于其采用了高效的哈希表结构来进行空间划分,并减少了冗余参数的数量[^4]。 ##### 2. **存储需求** NeRF 需要较大的存储容量来保存复杂的隐式函数权重矩阵;而 Instant-NGP 借助稀疏网格技术降低了整体所需的显存占用率,在实际应用中更加友好[^5]。 ##### 3. **泛化能力** 尽管两者都能很好地重建已知数据集中的物体外观特性,但在面对未知环境或者更大规模的数据集合时,Instant-NGP 展现出更强的适应性和鲁棒性。这是因为它的设计允许快速调整配置以匹配不同的输入条件[^6]。 ##### 4. **频率响应行为** 正如提到过的那样,标准版本的 NeRF 对于距离较远却携带高频率变化的信息难以有效捕捉,容易造成所谓的“信号走样”。相比之下,Instant-NGP 更加注重平衡全局一致性和局部精细度之间的关系,因此能够更好地应对这种情况下的挑战[^7]。 --- #### 关系探讨 虽然二者都属于神经辐射领域范畴内的研究方向之一,但从本质上讲,Instant-NGP 应该被看作是对经典 NeRF 架构的一次重要升级迭代而非完全替代品。具体来说: - 它们共享相同的目标:即利用深度学习手段构建精确且视觉上令人满意的虚拟世界表现形式; - 同时也继承了一些共同的技术理念比如依赖 MLP 来预测颜色强度分布规律等等; - 不过为了克服原始方案存在的缺陷,后者引入了许多创新机制使得整个流程变得更加高效便捷同时也具备更高的灵活性去满足多样化的需求场景。 ```python import torch from instant_ngp import NGPModel # Example usage of Instant-NGP model initialization and training loop. model = NGPModel() for epoch in range(num_epochs): predictions, loss = model.train_step(input_data) optimizer.zero_grad() loss.backward() optimizer.step() ``` --- #### 总结 综上所述,Instant-NGP 提供了一个更快捷、资源利用率更高并且适用范围更为广泛的解决方案相对于传统意义上的 NeRF 技术而言。不过需要注意的是,任何新技术都有其特定的应用边界,在选用之前还需充分考虑项目实际情况做出合理判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值