实时神经辐射场论文(SNeRG、instant-NGP、MERF)

本文介绍了三种实时渲染神经辐射场的方法:SNeRG通过将NeRF模型转化为稀疏体素网格实现加速;Instant-NGP利用多尺度哈希表提高检索速度;而MERF结合低分辨率3D网格和2D平面减少内存消耗。这些技术通过不同的优化策略平衡了质量和性能。
摘要由CSDN通过智能技术生成

网课记录——实时渲染的神经辐射场论文串讲:SNeRG/Instant-NGP/MERF_哔哩哔哩_bilibili

一、SNeRF

Baking neural radiance fields for real-time view synthesis

将一个NeRF模型bake到一个稀疏离散的网格上,也就是将一个MLP模型转化成了一个稀疏网格模型,使它能够在商用硬件上进行实时渲染。首先生成相机射线,然后从一个大的神经网络MLP (JAXNeRF)中采样,采样出来的值被储存在稀疏3D体素网格中,这样在渲染时不需要去查询MLP,而是直接查询体素,达到了加速渲染的目的。其中^{V_{s}}表示用于反射的特征向量,在右下角的模型中采用的体密度和特征向量是这条直线上所有点的累积(即像素点对应的反射),而不是采样点。

1. 延迟NeRF框架

instant-ngp是英伟达实验室开源的一个项目,全称为Instant Neural Graphics Primitives。它提供了四种神经图形原语的实现,包括神经辐射(NeRF)、有符号距离函数(SDFs)、神经图像和神经体积。在每种情况下,都使用了tiny-cuda-nn框架进行训练和渲染,该框架使用了多分辨率哈希输入编码的多层感知机(MLP)。\[2\] 如果想要使用instant-ngp进行训练,可以直接打开instant-ngp的GUI界面(./instant-ngp),然后将transform.json文件拖放到GUI界面中即可进行训练。几秒钟后,您就可以看到渲染的结果。\[1\] instant-ngp可以在Windows和Linux上进行编译和运行。在Windows上,您可以从GitHub上下载与您的显卡对应的版本,解压缩后直接启动instant-ngp.exe。该项目还带有一个交互式GUI界面,方便使用和操作。\[2\] 如果您对instant-ngp感兴趣,可以访问项目主页https://nvlabs.github.io/instant-ngp/了解更多信息,并从GitHub上获取源代码https://github.com/NVlabs/instant-ngp。\[2\] #### 引用[.reference_title] - *1* *3* [Ubuntu20.04复现instant-ngp,自建数据集,导出mesh](https://blog.csdn.net/weixin_59961223/article/details/130438781)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [instant-ngp简介及NeRF的使用](https://blog.csdn.net/fengbingchun/article/details/129642774)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值