PDE+PINN+DFSNet

知识基础补充

在这里插入图片描述
PINN的原理就是通过训练神经网络,来最小化损失函数,使得神经网络接近于偏微分方程的解
损失函数是初始边界条件的残差项,以及求解域内部偏微分方程的残差.
在这里插入图片描述
训练完成后进行推断就可以得到时空上的解了.

首先我们构建一个神经网络来作为方程的解
给定对应的时空变量x,t,神经网络可以给出对应的数值解u
(注意真实解u帽和u有一定距离)
在这里插入图片描述
损失函数Lb主要使得u帽满足边界条件;
Lf用于构建域内部解的损失Lf(主要使得u帽满足BG方程本身),需要按照BG方程的结构求解u帽对于时空变量xt的梯度,并带入方程,使得方程此处等于0。

下面把两部分进行加权求和,得到总损失L
训练的过程就是不断优化cita,使得总损失最小(也就是u帽满足BG方程的边界条件以及方程本身)

背景

机器学习技术的逼近能力有限,这些模型可能无法保证期望的预测结果,并且对于复杂的非线性PDE系统,往往会产生不准确的解。
提出DNN解决->PINN解决(PINN的问题):尽管基于PINN的方法看起来很简单,但这些方法在满足所有方程残差(特别是边界条件)方面通常会遇到困难,导致一些局部解的收敛速度慢或近似结果不稳定。->其他人的改进是有监督学习->提出无监督的学习

Methodology

介绍了 PINN的过程与不足

模型的输入是什么:DFS-Net 使用随机时空点坐标作为代理方法的输入
损失函数:由控制方程残差和边界 / 初始条件项构成

加权思想:中心点比边缘点更富有信息(中间的点加权大)
在这里插入图片描述
数据增强:
引入线性扩展层作为DFS网络中的数据增强
在这里插入图片描述
我的理解(增加了非线性性?)

激励块:以进一步提高DFS网的逼近能力。激励块是建立在两个层之间的变换上的计算单元。它将最后一个隐藏层的输出作为输入,并生成每个信道调制权重的集合,这可以看作是一种简单的自选通机制。

(1)固定激励模式和(2)非固定激励模式。

整体结构:

为了缓解代理求解方法在不同子域(例如,计算域内部或近壁区域)上的预测结果不稳定问题,DFS-Net使用了一种点加权机制来校准随机采样训练点的权重
此外,方法还引入了基于注意力的激励块**(excitation block)**来提高方法的拟合精度并加速训练。
在这里插入图片描述

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
以下是使用PINN求解PDE的Python代码示例: ```python import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 定义PINN模型 class PINN(tf.keras.Model): def __init__(self): super(PINN, self).__init__() self.dense1 = tf.keras.layers.Dense(50, activation=tf.nn.tanh) self.dense2 = tf.keras.layers.Dense(50, activation=tf.nn.tanh) self.dense3 = tf.keras.layers.Dense(1, activation=None) def call(self, inputs): x = inputs[:, 0:1] t = inputs[:, 1:2] u = self.dense1(tf.concat([x, t], 1)) u = self.dense2(u) u = self.dense3(u) return u # 定义PDE的边界条件和初始条件 def initial_condition(x): return np.sin(np.pi * x) def boundary_condition(x, t): return np.exp(-np.pi**2 * t) * np.sin(np.pi * x) # 定义PINN模型的损失函数 def loss(model, x, t, u, x_bc, t_bc, u_bc): with tf.GradientTape(persistent=True) as tape: tape.watch(x) tape.watch(t) u_pred = model(tf.concat([x, t], 1)) u_x = tape.gradient(u_pred, x) u_t = tape.gradient(u_pred, t) u_xx = tape.gradient(u_x, x) f = u_t + u_pred * u_x - 0.01 * u_xx f_bc = model(tf.concat([x_bc, t_bc], 1)) - u_bc loss = tf.reduce_mean(tf.square(f)) + tf.reduce_mean(tf.square(f_bc)) return loss # 定义训练函数 def train(model, x, t, u, x_bc, t_bc, u_bc, epochs): optimizer = tf.keras.optimizers.Adam() for epoch in range(epochs): with tf.GradientTape() as tape: loss_value = loss(model, x, t, u, x_bc, t_bc, u_bc) grads = tape.gradient(loss_value, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) if epoch % 100 == 0: print("Epoch {}: Loss = {}".format(epoch, loss_value.numpy())) # 生成训练数据和边界数据 N = 1000 M = 100 x = np.linspace(0, 1, N) t = np.linspace(0, 1, M) x, t = np.meshgrid(x, t) x, t = x.flatten()[:, None], t.flatten()[:, None] u = initial_condition(x) x_bc = np.concatenate((x[0:N], x[N*(M-1):N*M]), axis=0) t_bc = np.concatenate((t[0:N], t[N*(M-1):N*M]), axis=0) u_bc = np.concatenate((boundary_condition(x[0:N], t[0:N]), boundary_condition(x[N*(M-1):N*M], t[N*(M-1):N*M])), axis=0) # 训练PINN模型 model = PINN() train(model, x, t, u, x_bc, t_bc, u_bc, epochs=1000) # 绘制预测结果 u_pred = model(tf.concat([x, t], 1)) u_pred = np.reshape(u_pred, (M, N)) plt.imshow(u_pred, cmap='jet', extent=[0, 1, 0, 1], origin='lower') plt.colorbar() plt.show() ``` 该代码使用PINN求解了一个一维热方程,其中包括了初始条件和边界条件。在训练模型后,可以使用模型预测每个时间和空间点的温度值,并绘制成图像。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值