NMS-python-numpy 精简非极大值抑制代码

本文详细介绍了非极大值抑制(NMS)算法的原理,包括计算IoU的过程以及NMS的具体步骤。通过简化代码展示了如何在Python中实现NMS,并提供了可视化代码以展示NMS前后的效果。此外,还给出了一个NMS应用实例,用于过滤重复的检测框。
摘要由CSDN通过智能技术生成

参考别人的代码,发现别人的代码比较繁琐,以下是精简后的NMS代码,代码可读性强,最后给出可视化图以及可视化代码(可视化是参考别人的代码)


NMS过程:

1 将各组box按照score降序排列

2 从score最大值开始,置为当前box,保存idex,然后依次遍历后面的box,计算与当前box的IOU值,若大于阈值,则抑制,不会输出

3 完成一轮遍历后,继续选择下一个非抑制的box作为当前box,重复步骤2

4 返回没有被抑制的index即符合条件的box

NMS在过程中需要计算iou,所以直接给出iou的函数:

def iou(bbox,gt):
    #lt是两个框中间重叠框的最左边和最上边的坐标,rb是两个框中间重叠框的最右边和最下边的坐标
    lt = np.maximum(bbox[:,None,:2],gt[:,:2]) # [N,M,2]
    rb = np.minimum(bbox[:,None,2:4],gt[:,2:4]) # [N,M,2]
    #wh是重叠框的宽和高,+1是因为求边长,边长就等于前后两端的坐标点相减且+1
    wh = np.maximum(rb - lt  + 1 , 0) # [N,M,2]
    #求重叠框的面积
    inter_area = wh[:,:,0] * wh[:,:,1] #[N,M]
    #分别求两个框各自的面积
    bbox_area = (bbox[:,2] - bbox[:,0] + 1) * (bbox[:,3] - bbox[:,1] + 1)  #[N,]
    gt_area = (gt[:,2] - gt[:,0] + 1) * (gt[:,3] - gt[:,1] + 1)  #[M,]
    #iou的公式,重叠框面积 / 两个框面积之和减去重叠框面积
    iou = inter_area / (bbox_area[:,None] + gt_area - inter_area)  #[N,M]
    return iou  

下面是NMS的代码:

def nms(bbox,thresh):
    #得分bbox第五列是得分,前四列是x0,y0,x1,y1
    score = bbox[:,4]
    #对得分进行排序
    order = np.argsort(score)
    #记录结果值,每次保存得分最高的那个框的索引,最后再用bbox[keep]取出相应框
    keep = []
    #一直筛选到没有可用的框
    while order.size > 0:
        #取得分最高的框的索引,因为order是升序,所以最后一位是得分最高的
        index = order[-1]
        #保存得分最高的那个框的索引
        keep.append(index)
        #取出这个框
        x = bbox[index]
        #计算iou,x[None,:]是为了保持shape一致,squeeze(0)是去掉第一个维度,不去掉的话结果的shape是[1,5],再np.where就不对了,必须让其等于[5,]
        sub_bbox_iou = iou(x[None,:],bbox[order[:-1]]).squeeze(0)
        #筛选小于阈值的框,大于阈值的话,就和得分最高的那个框重叠了,所以保留不重叠的框
        index_after = np.where(sub_bbox_iou < thresh)
        #筛选剩下的框
        order = order[index_after]
    return keep

下面给出可视化的代码以及效果图:

import matplotlib.pyplot as plt
import numpy as np
#先初始化boxes
boxes=np.array([[100,100,210,210,0.72],
        [250,250,420,420,0.8],
        [220,220,320,330,0.92],
        [100,100,210,210,0.72],
        [230,240,325,330,0.81],
        [220,230,315,340,0.9]])
def plot_bbox(dets, c='k'):
    x1 = dets[:,0]
    y1 = dets[:,1]
    x2 = dets[:,2]
    y2 = dets[:,3]
    
    plt.plot([x1,x2], [y1,y1], c)
    plt.plot([x1,x1], [y1,y2], c)
    plt.plot([x1,x2], [y2,y2], c)
    plt.plot([x2,x2], [y1,y2], c)
    plt.title(" nms")

#在jupyter运行,或者在py运行
plt.figure(1)
ax1 = plt.subplot(1,2,1)
ax2 = plt.subplot(1,2,2)
 
plt.sca(ax1)
plot_bbox(boxes,'k')   # before nms
 
keep = nms(boxes, 0.7)
plt.sca(ax2)
plot_bbox(boxes[keep], 'r')# after nms

左边的是没有进行nms的效果,右边的是进行nms后的效果。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值