[MR]RCM约束下的手术机器人

RCM约束下的手术机器人


RCM(Remote Center of Motion)约束,通俗讲就是做微创手术时,机械臂插进身体,机械臂受身体的插入点的约束,不能乱动

相关参考论文《 Task Control with Remote Center of Motion Constraint for Minimally Invasive Robotic Surgery


RCM例题如下

下图显示了用机器人执行内窥镜检查问题的平面表示。

平面2R机械臂的第二个(也是最后一个)连杆的内窥镜摄像头必须穿过套管针(红色圆柱体)与垂直壁相交, 通过套管针中心(红点)

机械臂的两个连杆的长度都等于1。

P E P_{E} PE点的所有容许的笛卡尔速度
在这里插入图片描述

解题如下

首先写出 P 1 P_{1} P1 P 2 P_{2} P2 (即 P E P_{E} PE) 的坐标如下:

P 1 = ( cos ⁡ ( q 1 ) sin ⁡ ( q 1 ) ) P_{1}=\left(\begin{array}{c} \cos\left(q_{1}\right)\\ \sin\left(q_{1}\right) \end{array}\right) P1=(cos(q1)sin(q1))

P 2 = ( cos ⁡ ( q 1 ) + cos ⁡ ( q 2 ) sin ⁡ ( q 1 ) + sin ⁡ ( q 2 ) ) P_{2}=\left(\begin{array}{c} \cos\left(q_{1}\right)+\cos\left(q_{2}\right)\\ \sin\left(q_{1}\right)+\sin\left(q_{2}\right) \end{array}\right) P2=(cos(q1)+cos(q2)sin(q1)+sin(q2))

以及角度 q q q如下:

q = ( q 1 q 2 ) q = \left(\begin{array}{c} q_{1}\\ q_{2} \end{array}\right) q=(q1q2)

然后 P 1 P_{1} P1 P 2 P_{2} P2 q q q 微分求 雅可比矩阵 J 1 J_{1} J1 J 2 J_{2} J2 如下:

J 1 = ∂ P 1 ∂ q = ( − sin ⁡ ( q 1 ) 0 cos ⁡ ( q 1 ) 0 ) J_{1}= \frac{\partial P_{1}}{\partial q} = \left(\begin{array}{cc} -\sin\left(q_{1}\right) & 0\\ \cos\left(q_{1}\right) & 0 \end{array}\right) J1=qP1=(sin(q1)cos(q1)00)

J 2 = ∂ P 2 ∂ q = ( − sin ⁡ ( q 1 ) − sin ⁡ ( q 2 ) cos ⁡ ( q 1 ) cos ⁡ ( q 2 ) ) J_{2} = \frac{\partial P_{2}}{\partial q} = \left(\begin{array}{cc} -\sin\left(q_{1}\right) & -\sin\left(q_{2}\right)\\ \cos\left(q_{1}\right) & \cos\left(q_{2}\right) \end{array}\right) J2=qP2=(sin(q1)cos(q1)sin(q2)cos(q2))

然后根据论文提到的公式,可以求出 P R C M P_{RCM} PRCM 处的雅可比矩阵 J R C M ( q , λ ) J_{RCM}(q, \lambda) JRCM(q,λ) 如下:

J R C M ( q , λ ) = ( J 2 − λ ( J 2 − J 1 ) P 2 − P 1 ) T = ( − sin ⁡ ( q 1 ) − λ   sin ⁡ ( q 2 ) cos ⁡ ( q 2 ) cos ⁡ ( q 1 ) λ   cos ⁡ ( q 2 ) sin ⁡ ( q 2 ) ) J_{RCM}(q, \lambda) = \left(\begin{array}{c} J_{2}-\lambda(J_{2}-J_{1})\\ P2-P1 \end{array}\right)^{T} = \left(\begin{array}{ccc} -\sin\left(q_{1}\right) & -\lambda \,\sin\left(q_{2}\right) & \cos\left(q_{2}\right)\\ \cos\left(q_{1}\right) & \lambda \,\cos\left(q_{2}\right) & \sin\left(q_{2}\right) \end{array}\right) JRCM(q,λ)=(J2λ(J2J1)P2P1)T=(sin(q1)cos(q1)λsin(q2)λcos(q2)cos(q2)sin(q2))

接着,根据下面这个公式,可以求得角速度 q ˙ \dot{q} q˙如下:

P R C M ˙ = J R C M ( q , λ ) ( q ˙ λ ˙ ) = 0 \dot{P_{RCM}} = J_{RCM}(q, \lambda) \left(\begin{array}{c} \dot{q}\\ \dot{\lambda} \end{array}\right) = 0 PRCM˙=JRCM(q,λ)(q˙λ˙)=0

q ˙ = ( λ ˙ sin ⁡ ( q 1 − q 2 ) − λ ˙   cos ⁡ ( q 1 − q 2 ) λ   sin ⁡ ( q 1 − q 2 ) ) \dot{q} = \left(\begin{array}{c} \frac{\mathrm{\dot{\lambda}}}{\sin\left(q_{1}-q_{2}\right)}\\ -\frac{\mathrm{\dot{\lambda}}\,\cos\left(q_{1}-q_{2}\right)}{\lambda \,\sin\left(q_{1}-q_{2}\right)} \end{array}\right) q˙=(sin(q1q2)λ˙λsin(q1q2)λ˙cos(q1q2))

求得角速度后,就可以计算出 P 2 ˙ = P E ˙ \dot{P_{2}}=\dot{P_{E}} P2˙=PE˙ 如下:

P E ˙ = J 2 q ˙ = ( − λ ˙   ( sin ⁡ ( q 1 − 2   q 2 ) − sin ⁡ ( q 1 ) + 2   λ   sin ⁡ ( q 1 ) ) 2   λ   sin ⁡ ( q 1 − q 2 ) − λ ˙   ( cos ⁡ ( q 1 − 2   q 2 ) + cos ⁡ ( q 1 ) − 2   λ   cos ⁡ ( q 1 ) ) 2   λ   sin ⁡ ( q 1 − q 2 ) ) \dot{P_{E}} = J_{2} \dot{q} = \left(\begin{array}{c} -\frac{\mathrm{\dot{\lambda}}\,\left(\sin\left(q_{1}-2\,q_{2}\right)-\sin\left(q_{1}\right)+2\,\lambda \,\sin\left(q_{1}\right)\right)}{2\,\lambda \,\sin\left(q_{1}-q_{2}\right)}\\ -\frac{\mathrm{\dot{\lambda}}\,\left(\cos\left(q_{1}-2\,q_{2}\right)+\cos\left(q_{1}\right)-2\,\lambda \,\cos\left(q_{1}\right)\right)}{2\,\lambda \,\sin\left(q_{1}-q_{2}\right)} \end{array}\right) PE˙=J2q˙=(2λsin(q1q2)λ˙(sin(q12q2)sin(q1)+2λsin(q1))2λsin(q1q2)λ˙(cos(q12q2)+cos(q1)2λcos(q1)))

Matlab代码实现如下

clear all
close all
clc

定义各种要用的符号
syms q1 q2 real     %角
syms lambda lambdav

q = [q1; q2];
qv = [qv1; qv2];

P1 = [[cos(q1)]; [sin(q1)]]
P2 = [[cos(q1)+cos(q2)]; [sin(q1)+sin(q2)]];

J1 = jacobian(P1, q);
J2 = jacobian(P2, q);

Jrcm = [[J1+lambda*(J2-J1)] P2-P1]
v = [qv; lambdav];

qv = simplify((inv(Jrcm(:, 1:2)))*(Jrcm(:, 3)*(-lambdav)))

Pe = simplify(J2*qv)
  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是土豆大叔啊!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值