DeepSeek产品的模型分类和区别

一、DeepSeek 模型全览

1. 通用语言模型
模型名称
参数规模
核心能力
应用场景
特点
DeepSeek-V3
6710 亿
多领域推理、复杂问题解答
跨领域对话、学术研究、文本生成
综合性能强,支持复杂推理任务
DeepSeek-GPT
未公开
生成式文本创作
内容生成、智能对话、创意写作
基于 GPT 架构,长文本生成能力强
DeepSeek-V2/V2.5
轻量级
高效推理、平衡性能与成本
企业服务、边缘计算、快速响应场景
性能接近 V3,资源占用低
2. 代码专用模型
模型名称
参数规模
核心能力
应用场景
特点
DeepSeek-R1
6710 亿
代码生成、优化与理解
软件开发、代码审查、编程教育
强化学习优化,训练成本仅为 OpenAI 的 1/30
DeepSeek-Coder
未公开
多语言代码生成与上下文感知
代码补全、自动化测试、代码重构
支持 Python/Java/JS 等,高精度生成
R1-Distill-Qwen 系列
1.5B–32B
轻量化代码生成
教育、低资源环境
知识蒸馏技术,输入成本低至 0.5 元/百万 tokens
DeepSeek-R1-Lite-Preview
未公开
基础代码生成功能
中小型企业工具、开发者体验
快速部署,成本极低
3. 多模态与垂直领域模型
模型名称
核心能力
模态支持
应用场景
特点
DeepSeek-Janus-Pro
跨模态图文生成与问答
文本、图像、代码
图文生成、多模态数据分析
混合模态输入,灵活性高
DeepSeek-Janus-Flow
自动化流程优化
文本、数据
业务流程自动化、数据流水线
规则引擎与 AI 结合
DeepSeek-Vision
图像分类、目标检测
图像
安防监控、医疗影像分析
高精度视觉分析
DeepSeek-NLP
文本分类、情感分析
文本
舆情监控、智能客服
多语言支持,文本理解能力强
DeepSeek-Data
数据清洗、预测分析
数据
金融分析、市场预测
处理大规模结构化数据
DeepSeek-Speech
语音识别与合成
语音
语音助手、实时翻译
低延迟,高鲁棒性

二、核心模型区别与选择指

1. 模型能力对比
维度
DeepSeek-V3
DeepSeek-R1
DeepSeek-Coder
DeepSeek-Janus-Pro
DeepSeek-Vision
任务类型
通用 NLP
代码生成
代码生成与理解
多模态任务
计算机视觉
模态支持
文本
文本
文本
文本、图像、代码
图像
训练技术
千亿参数 LLM
强化学习优化
上下文感知
多模态融合
卷积神经网络
适用场景
跨领域对话
软件开发
代码补全
图文生成
目标检测
2. 如何选择模型
  • **代码开发**:优先选择 **DeepSeek-R1**(高精度)或 **DeepSeek-Coder**(多语言支持)。
  • **多模态任务**:使用 **DeepSeek-Janus-Pro**(图文混合)或 **DeepSeek-Vision**(纯图像)。
  • **低成本部署**:选择 **R1-Distill-Qwen-1.5B**(免费)或 **DeepSeek-V2.5**(轻量级)。
  • **语音/数据任务**:使用 **DeepSeek-Speech** 或 **DeepSeek-Data**。

三、部署与使用方式

1. 云平台部署
  • **阿里云百炼平台**:支持一键部署 V3、R1 及其蒸馏版,提供训练-推理全流程。
  • **昇腾社区**:提供精度微调和推理服务化能力,适合企业级应用。

2. API 调用
  • **代码生成 API**(DeepSeek-R1/Coder):
import requests response = requests.post(
        url="https://api.deepseek.com/coder/generate",
        headers={"Authorization": "Bearer YOUR_API_KEY"},
        json={"prompt": "Write a Python quicksort function."} )
print(response.json()["code"])
3. 开源与免费资源
  • **R1-Distill-Qwen-1.5B**:限时免费,可通过昇腾社区下载。
  • **DeepSeek-Vision**:部分预训练模型开源,支持自定义图像任务。

四、注意事项

  1. **模型更新**:关注 DeepSeek 官方公告,及时获取新版本(如 V3 的迭代版本)。
  2. **算力需求**:千亿级模型(如 V3/R1)需高性能 GPU 集群,轻量版适合普通服务器。
  3. **数据隐私**:通过 API 调用时,确保敏感数据加密处理。
如需进一步技术细节(如具体 API 参数或训练方法),可参考昇腾社区或阿里云百炼平台文档。
更多文章,可以看我的学习笔记 www.0101.vip
----------------------------------------------------------------------------------
我是powervip ,区块链程序员
我的公众号:区块链战斗机
qq群:1003771218
我的学习笔记: www.0101.vip
如果你觉得这篇文章写得还可以,请帮忙点个赞,谢谢!著作权归作者所有。如需转载,请注明原文出处并保留原文链接。
你的鼓励,我的动力!
### 使用DeepSeek模型进行文本分类 对于利用大型预训练模型DeepSeek执行文本分类任务而言,可以借鉴现有的深度学习框架技术来实现这一目标[^1]。具体来说,在构建基于DeepSeek的大规模语言模型用于文本分类的过程中,通常会涉及数据准备、模型加载以及预测三个主要环节。 #### 数据准备阶段 在此期间,需标准化、分词并矢量化输入文本数据。这一步骤可以通过`tf.keras.layers.TextVectorization`层高效完成,该组件能够自动处理原始字符串形式的数据转换工作,从而简化前期准备工作[^3]。 ```python import tensorflow as tf vectorize_layer = tf.keras.layers.TextVectorization( max_tokens=20000, output_mode='int', output_sequence_length=200) train_text_ds = raw_train_ds.map(lambda x, y: (vectorize_layer(x), y), num_parallel_calls=tf.data.AUTOTUNE) ``` #### 加载预训练的DeepSeek模型 假设已经获取了一个经过充分训练且适用于多种自然语言处理任务(包括但不限于文本分类)的DeepSeek模型,则可以直接调用此模型来进行后续操作。值得注意的是,实际应用中可能还需要根据特定应用场景微调这些预训练参数以获得更优性能表现。 ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name_or_path = "path_to_deepseek_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path) ``` #### 进行预测 最后,在完成了上述两步之后就可以利用已有的DeepSeek模型对新的未见过的样本做出类别判断了。这里展示了一种简单的方式——通过编码器将待测实例转化为向量表示后再送入全连接网络得到最终输出结果。 ```python def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs)[0] predictions = tf.nn.softmax(outputs.detach().numpy(), axis=-1).argmax(axis=-1) return ["negative", "positive"][predictions.item()] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值