CRNN
文章目录
知识树

BS用在预测阶段,CTC用在训练阶段
一、数据集

二、研究背景


26*2=52, 52个字符的分类识别



序列模型使用马尔可夫算法。HOG
这里采取编辑距离的算法。采用删除,改变,插入,衡量S1和S2的相似程度。
三、研究意义
- CRNN研究OCR的pipeline作为了OCR领域的一个基本方法论

- 加速了计算机视觉应用落地
因为模型参数少,仅仅只有8.3M
四、 算法
4.1 RNN算法
每个节点还都会输出一个状态h


这篇博客详细介绍了CRNN模型,包括数据集、研究背景、CTC与Beam Search算法的应用,以及CNN、LSTM和CTC层的工作原理。CRNN在OCR领域的应用被强调,模型因其参数少和端到端的特性而具有重要意义。

BS用在预测阶段,CTC用在训练阶段



26*2=52, 52个字符的分类识别



序列模型使用马尔可夫算法。HOG
这里采取编辑距离的算法。采用删除,改变,插入,衡量S1和S2的相似程度。

每个节点还都会输出一个状态h


1837
1520
714

被折叠的 条评论
为什么被折叠?