【Diffusers】三、扩散模型的训练流程

三、训练扩散模型

训练的基础

不能直接训练pipeline,得单独训练组件。

Train a diffusion model

通常,最好的结果是通过在特定数据集上微调预训练模型来获得的。可以在Hub上找到许多这样的检查点. 本教程将教如何在Smithsonian Butterflies数据集的子集上从头开始训练UNet2DModel,以生成自己的 🦋 蝴蝶 🦋。

训练前设置

在开始之前,请确保安装数据集来加载和预处理图像数据集,并安装了加速,以简化在任意数量的 GPU 上的训练。以下命令还将安装**TensorBoard以可视化训练指标(您还可以使用权重和偏差**来跟踪您的训练)。

pip install differs[training]

上传模型:从笔记本登录并在出现提示时输入您的令牌。确保您的令牌具有写入角色。

from huggingface_hub import notebook_login
notebook_login()
# 或者从终端登录:
huggingface-cli login

由于模型检查点非常大,因此安装**Git-LFS**来对这些大文件进行版本控制:

!sudo apt -qq install git-lfs
!git config --global credential.helper store

训练配置

为了方便起见,创建一个TrainingConfig包含训练超参数的类(随意调整它们):

from dataclasses import dataclass

@dataclass
class TrainingConfig:
    image_size = 128  # the generated image resolution
    train_batch_size = 16
    eval_batch_size = 16  # how many images to sample during evaluation
    num_epochs = 50
    gradient_accumulation_steps = 1
    learning_rate = 1e-4
    lr_warmup_steps = 500
    save_image_epochs = 10
    save_model_epochs = 30
    mixed_precision = "fp16"  # `no` for float32, `fp16` for automatic mixed precision
    output_dir = "ddpm-butterflies-128"  # the model name locally and on the HF Hub

    push_to_hub = True  # whether to upload the saved model to the HF Hub
    hub_model_id = "<your-username>/<my-awesome-model>"  # the name of the repository to create on the HF Hub
    hub_private_repo = False
    overwrite_output_dir = True  # overwrite the old model when re-running the notebook
    seed = 0

config = TrainingConfig()

加载数据集

使用 🤗 数据集库轻松加载**史密森尼蝴蝶数据集**

from datasets import load_dataset

config.dataset_name = "huggan/smithsonian_butterflies_subset"
dataset = load_dataset(config.dataset_name, split="train")

**可以从HugGan 社区活动中找到其他数据集,也可以通过[ImageFolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder)**创建本地config.dataset_name 如果数据集来自 HugGan 社区活动,或者imagefolder您使用自己的图像,则设置为数据集的存储库 ID。

快速可视化

Datasets 使用**Image功能自动解码图像数据并将其加载为[PIL.Image](https://pillow.readthedocs.io/en/stable/reference/Image.html)**我们可以可视化的图像:

import matplotlib.pyplot as plt

fig, axs = plt.subplots(1, 4, figsize=(16, 4))
for i, image in enumerate(dataset[:4]["image"]):
    axs[i].imshow(image)
    axs[i].set_axis_off()
fig.show()

预处理

不过,这些图像的大小不同,因此您需要先对它们进行预处理:

  • Resizeconfig.image_size将图像大小更改为 中定义的大小。
  • RandomHorizontalFlip通过随机镜像图像来增强数据集。
  • Normalize将像素值重新缩放到 [-1, 1] 范围内非常重要,这正是模型所期望的。
from torchvision import transforms

preprocess = transforms.Compose(
    [        transforms.Resize((config.image_size, config.image_size)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ])

数据集的**set_transform**preprocess方法在训练期间动态应用该函数:

def transform(examples):
    images = [preprocess(image.convert("RGB")) for image in examples["image"]]
    return {"images": images}

dataset.set_transform(transform)

训练模型

构造数据加载器

import torch
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)

Diffusers 中的预训练模型可以使用您想要的参数轻松地从其模型类创建。例如,创建**UNet2DModel**:

from diffusers import UNet2DModel

model = UNet2DModel(
    sample_size=config.image_size,  # the target image resolution
    in_channels=3,  # the number of input channels, 3 for RGB images
    out_channels=3,  # the number of output channels
    layers_per_block=2,  # how many ResNet layers to use per UNet block
 # 每个 UNet 块的输出通道数
    block_out_channels=(128, 128, 256, 256, 512, 512),  # the number of output channels for each UNet block
    down_block_types=(
        "DownBlock2D",  # a regular ResNet downsampling block
        "DownBlock2D",
        "DownBlock2D",
        "DownBlock2D",
        "AttnDownBlock2D",  # a ResNet downsampling block with spatial self-attention
        "DownBlock2D",
    ),
    up_block_types=(
        "UpBlock2D",  # a regular ResNet upsampling block
        "AttnUpBlock2D",  # a ResNet upsampling block with spatial self-attention
        "UpBlock2D",
        "UpBlock2D",
        "UpBlock2D",
        "UpBlock2D",
    ),
)

创建调度程序

根据使用模型进行训练还是推理,调度程序的行为会有所不同。在推理过程中,调度器根据噪声生成图像。在训练期间,调度程序从扩散过程中的特定点获取模型输出(或样本),并根据噪声调度更新规则将噪声应用于图像。

让我们看一下**DDPMScheduler**并使用该add_noise方法向之前添加一些随机噪声sample_image

import torch
from PIL import Image
from diffusers import DDPMScheduler

noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
noise = torch.randn(sample_image.shape)
timesteps = torch.LongTensor([50])
noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)

Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])

模型的训练目标是预测添加到图像中的噪声。这一步的损失可以通过下式计算:

import torch.nn.functional as F

noise_pred = model(noisy_image, timesteps).sample
loss = F.mse_loss(noise_pred, noise)

训练模型

到目前为止,您已经掌握了开始训练模型的大部分内容,剩下的就是将所有内容组合在一起。

首先,需要一个优化器和一个学习率调度器:

from diffusers.optimization import get_cosine_schedule_with_warmup

optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
lr_scheduler = get_cosine_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=config.lr_warmup_steps,
    num_training_steps=(len(train_dataloader) * config.num_epochs),
)

然后,您需要一种评估模型的方法。为了进行评估,您可以使用**DDPMPipeline**生成一批样本图像并将其保存为网格:

from diffusers import DDPMPipeline
from diffusers.utils import make_image_grid
import os

def evaluate(config, epoch, pipeline):
    # Sample some images from random noise (this is the backward diffusion process).
    # The default pipeline output type is `List[PIL.Image]`
    images = pipeline(
        batch_size=config.eval_batch_size,
        generator=torch.manual_seed(config.seed),
    ).images

    # Make a grid out of the images
    image_grid = make_image_grid(images, rows=4, cols=4)

    # Save the images
    test_dir = os.path.join(config.output_dir, "samples")
    os.makedirs(test_dir, exist_ok=True)
    image_grid.save(f"{test_dir}/{epoch:04d}.png")

构建训练循环

现在,您可以使用 Accelerate 将所有这些组件包装在一个训练循环中,以轻松进行 TensorBoard 日志记录、梯度累积和混合精度训练。要将模型上传到 Hub,请编写一个函数来获取存储库名称和信息,然后将其推送到 Hub。

from accelerate import Accelerator
from huggingface_hub import create_repo, upload_folder
from tqdm.auto import tqdm
from pathlib import Path
import os

def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):
    # Initialize accelerator and tensorboard logging
    accelerator = Accelerator(
        mixed_precision=config.mixed_precision,
        gradient_accumulation_steps=config.gradient_accumulation_steps,
        log_with="tensorboard",
        project_dir=os.path.join(config.output_dir, "logs"),
    )
    if accelerator.is_main_process:
        if config.output_dir is not None:
            os.makedirs(config.output_dir, exist_ok=True)
        if config.push_to_hub:
            repo_id = create_repo(
                repo_id=config.hub_model_id or Path(config.output_dir).name, exist_ok=True
            ).repo_id
        accelerator.init_trackers("train_example")

    # Prepare everything
    # There is no specific order to remember, you just need to unpack the
    # objects in the same order you gave them to the prepare method.
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )

    global_step = 0

    # Now you train the model
    for epoch in range(config.num_epochs):
        progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
        progress_bar.set_description(f"Epoch {epoch}")

        for step, batch in enumerate(train_dataloader):
            clean_images = batch["images"]
            # Sample noise to add to the images
            noise = torch.randn(clean_images.shape, device=clean_images.device)
            bs = clean_images.shape[0]

            # Sample a random timestep for each image
            timesteps = torch.randint(
                0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device,
                dtype=torch.int64
            )

            # Add noise to the clean images according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
                noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
                loss = F.mse_loss(noise_pred, noise)
                accelerator.backward(loss)

                accelerator.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            progress_bar.update(1)
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
            global_step += 1

        # After each epoch you optionally sample some demo images with evaluate() and save the model
        if accelerator.is_main_process:
            pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)

            if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
                evaluate(config, epoch, pipeline)

            if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
                if config.push_to_hub:
                    upload_folder(
                        repo_id=repo_id,
                        folder_path=config.output_dir,
                        commit_message=f"Epoch {epoch}",
                        ignore_patterns=["step_*", "epoch_*"],
                    )
                else:
                    pipeline.save_pretrained(config.output_dir)

启动训练

**Accelerate 的notebook_launcher**函数启动训练了。向函数传递训练循环、所有训练参数和进程数(您可以将此值更改为可用的 GPU 数量)以用于训练:

from accelerate import notebook_launcher
args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)
notebook_launcher(train_loop, args, num_processes=1)
import glob

sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png"))
Image.open(sample_images[-1])

增强

无条件图像生成是可训练任务的一个示例。您可以访问** 扩散器培训示例**页面来探索其他任务和培训技术。以下是您可以学到的一些示例:

  • 20
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值