XIAO ESP32S3之AI应用

本文介绍了在XIAOESP32S3开发板上实现的应用示例,如集成ChatGPT语音助手和关键字识别,同时探讨了TinyML项目的展示,以及使用EdgeImpulse和MaixHub进行图像分类和模型训练,聚焦于物联网设备的机器学习部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、XIAO ESP32S3 AI应用示例

包含 ChatGPT语音助手、关键字识别等

英文:https://wiki.seeedstudio.com/xiao_esp32s3_speech2chatgpt/

中文:SenseCraft 模型助手部署 | Seeed Studio Wiki

二、XIAO开发板TinyML项目展示

各种XIAO开发板基于Tiny ML的演示项目:XIAO 系列教程和项目合集 | Seeed Studio Wiki

三、图像分类项目

图像分类(Image Classification)项目:TinyML Made Easy: Image Classification - Hackster.io

四、模型训练平台 

Edge Impulse是一个基于云的机器学习平台,可用于开发和部署嵌入式设备上的机器学习模型。

链接:Edge Impulse

MaixHub是一个在线平台,可以帮助开发者训练和部署机器学习模型到物联网设备上,包括数字识别模型。

链接:MaixHub

### ESP32-S3 AI 开发教程和资源 #### 一、ESP32-S3简介及其优势 ESP32-S3作为一款增强型微控制器,在功耗、硬件资源以及功能支持上进行了优化,尤其适合应用于低功耗物联网设备之中。相较于前代产品ESP32而言,该款芯片不仅提升了无线性能,还在安全性与稳定性方面做出了改进[^2]。 #### 二、开发环境配置指南 为了能够顺利开展基于ESP32-S3的人工智能应用开发工作,首先需要建立合适的软件环境。推荐采用官方提供的简易高效的方法来完成这一过程,具体步骤可参照相关文档说明进行操作[^1]。 #### 三、利用MicroPython简化编程流程 对于希望快速入门并尝试一些基础AI项目的开发者来说,使用MicroPython是一个不错的选择。通过安装特定版本的固件文件(可以从官方网站获取),即可轻松实现对多种外设的支持,比如网络请求等功能模块[^5]。 #### 四、案例分享:动作识别神经网络构建实例 有实际项目展示了如何将ESP32-S3 DevKitC-1开发板同MPU6050运动传感器相结合,借助DTW(动态时间规整)算法完成了简单的姿态分类任务。此例子证明了即使是在资源受限的情况下也能有效运行轻量级机器学习模型[^3]。 ```python from machine import Pin, I2C import mpu6050 # 假定已导入mpu6050库用于读取加速度计数据 i2c = I2C(scl=Pin(22), sda=Pin(21)) sensor = mpu6050.MPU6050(i2c) def get_acceleration(): accel_data = sensor.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴棍mcu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值