深度学习优化方法-AdaGrad

AdaGrad是一种优化算法,用于深度学习和神经网络的参数更新。它通过累积梯度平方和来调整学习率,初期学习率较高,随迭代次数增加逐渐减小。这使得算法在早期迭代中能快速收敛,但后期可能因学习率过小而收敛缓慢。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


梯度下降算法、随机梯度下降算法(SGD)、小批量梯度下降算法(mini-batch SGD)、动量法(momentum)、Nesterov动量法有一个共同的特点是:对于每一个参数都用相同的学习率进行更新。
但是在实际应用中,各个参数的重要性肯定是不一样的,所以我们对于不同的参数要动态的采取不同的学习率,让目标函数更快的收敛。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值