基本概念介绍
(1) Batch:全部数据都用,最大化运用向量运算的优势,提升计算的速度,但是性能不佳
SGD:只用一个样本,会得到好的随机性,在优化问题中可以克服鞍点问题,缺点是优化时时间更长,因为没有办法利用CPU或GPU的并行计算
Mini-batch:均衡性能和训练时间
(2)epoch:所有样本都参与训练
(3)batchsize:每次训练用的样本数量
(4)iteration:batch分了多少个,例如10000个样本,batch是1000,iteration=10
(5)shuffle:是否打乱顺序
(6)数据量少时可以在init()中全部读入内存,在getItem()中获取第[i]条数据
数据量大时:定义一个列表,数据集中每一条数据的文件名放到列表中
(7)使用Mini-batch代码架构:
(8)本节主要目的是用Dataset和DataLoader加载数据,以糖尿病数据集为例,代码如下:
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np
#Dataset是个抽象类,不能被实例化,只能被子类继承
class DiabetesDataset(Dataset):
def __init__(self, filepath):
# delimiter分隔符
xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
# 最后一列不要
self.x_data = torch.from_numpy(xy[:, :-1])
# 只要最后一列,加[]保证是矩阵,不是向量
self.y_data = torch.from_numpy(xy[:, [-1]])
#N行9列的数据,[N,9],用shape[0]可把N取出
self.len = xy.shape[0]
#可根据索引取第index条数据
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('diabetes.csv.gz')
#num_workers读数据集时用多线性读,需要几个并行的线程读取
#直接用train_loader在windows训练会报错,把用loader迭代的代码封装起来
train_loader = DataLoader(dataset=dataset,
batch_size=32,
shuffle=True,
num_workers=2)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
# 这个模块中没有参数,不需要训练
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(100):
for i, data in enumerate(train_loader, 0):
#Prepare data
inputs, labels = data
#Forward
y_pred = model(inputs)
loss = criterion(y_pred, labels)
print(epoch, i, loss.item())
#Backward
optimizer.zero_grad()
loss.backward()
#Update
optimizer.step()