线性代数基本概念

文章介绍了线性代数中的基本概念,包括行列式的定义及其与向量线性无关的关系,逆序数的概念,矩阵的秩、正交矩阵、迹、逆矩阵和伴随矩阵的定义,以及初等变换和向量组的相关知识。还涉及了线性方程组的齐次和非齐次解,特征值和特征向量,以及相似矩阵和二次型的基础内容。
摘要由CSDN通过智能技术生成

行列式

定义1:向量

一行一个向量,行列式可看成这几个向量构成的图形的面积,如果这个面积不为0,那么这几个向量就是线性无关;如果为0,就说明至少两个向量同向(0°或180°),则这几个向量线性相关。

定义2:逆序数

\begin{vmatrix} a_{11} &a_{12} &... &a_{1n} \\ a_{21} &a_{22} &... &a_{2n} \\ ... &... &... &... \\ a_{n1} &a_{n2} &... & a_{nn} \end{vmatrix} = \sum_{j_1j_2...j_n}(-1)^{\tau (j_1j_2...j_n)}a_{1j1}a_{2j2}...a_{njn} 

其中,\tau (j_1j_2...j_n)为逆序数,j_1j_2...j_n为1到n这n个数的n!个排列。

定义3:余子式和代数余子式,是一种逐渐降级的思想

矩阵

矩阵:由mxn个数构成的m行n列的矩形表格,称为mxn阶矩阵

矩阵的秩:线性无关的向量个数

正交矩阵:A^{T}A=E\Leftrightarrow A^{T}=A^{-1}

矩阵的迹:对角元素之和

矩阵的逆:AA^{-1}=E,A可逆等价于A的行列式≠0

伴随矩阵:A^{*} = \begin{pmatrix} A_{11} &A_{21} &... &A_{n1} \\ A_{12} &A_{22} &... &A_{n2} \\ ... &... &... &... \\ A_{1n} &A_{2n} &... &A_{nn} \end{pmatrix}A_{nn}为代数余子式,注意脚标

矩阵的运算:

数乘加法乘法
\left | kA \right | = k^n\left | A \right |\left | A+B \right |\neq \left | A \right |+\left | B \right |\left | AB \right |=\left | A \right |\left | B \right |(A^T)^{-1}=(A^{-1})^T(A^T)^{T}=A
(kA)^T= kA^T(A+B)^T=A^T+B^T(AB)^T = B^TA^T(A^*)^{-1}=(A^{-1})^*(A^{-1})^{-1}=A
(kA)^{-1} = \frac{1}{k}A^{-1}(A+B)^{-1}\neq A^{-1}+B^{-1}(AB)^{-1}=B^{-1}A^{-1}(A^T)^{*}=(A^{*})^T(A^*)^{*}=\left | A \right |^{n-2}A
(kA)^{*} = k^{n-1}A^{*}(A+B)^*\neq A^*+B^*(AB)^{*}=B^{*}A^{*}

矩阵求逆:

1、A^{-1} = \frac{A^*}{\left \lceil A \right \rceil}

2、(A|E)\overset{}{\rightarrow}(E|A^{-1}),A经初等变换化为E,同时E变为A^{-1}

初等变化:倍乘、互换和倍加

初等矩阵:由单位矩阵经过一次初等变换得到的矩阵;左乘行变换、右乘列变换

向量组

向量:n个数构成的一个有序数组

向量组:m个向量的集合

向量空间:\xi _1,\xi _2,...\xi _n是n维向量空间R^n中线性无关的有序向量组,\xi _n为n阶向量,\xi _1,\xi _2,...\xi _n称为R^n的一个基,基向量个数n称为向量空间R^n的维数。

线性方程组

齐次:A_{mxn}X=0,齐次通解

非齐次:A_{mxn}X=\beta,齐次通解+非齐次特解

特征值与特征向量

A\xi =\lambda \xi\lambda为特征值,\xi为特征向量

矩阵AkAA^kf(A)A^{-1}A^*P^{-1}APA^T
特征值\lambdak\lambda\lambda^kf(\lambda)\frac{1}{\lambda}(\lambda\neq 0)\frac{\left | A \right |}{\lambda}(\lambda\neq 0)\lambda\lambda
特征向量\xi\xi\xi\xi\xi\xiP^{-1}\xi重新计算

相似矩阵:P^{-1}AP=B,则A相似于B,记作A~B

二次型

二次型:n元二次多项式f(x_1,x_2,...,x_n)=a_{11}x_1^2+2a_{12}x_1x_2+...+2a_{1n}x_1x_n+a_{22}x_2^2+...+2a_{2n}x_2x_n+...+a_{nn}x_n^2

f(x_1,x_2,...,x_n)=(x_1,x_2,...,x_n)\begin{pmatrix} a_{11} &a_{12} &... &a_{1n} \\ a_{21} &a_{22} &... &a_{2n} \\ ... &... &... &... \\ a_{n1} &a_{n2} &... &a_{nn} \end{pmatrix}\bigl(\begin{smallmatrix} x_1\\ x_2\\ ...\\ x_n \end{smallmatrix}\bigr)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值