数学与图像处理中的变换及概率理论应用
一、坐标变换与齐次坐标
1.1 梯形平移问题
在平面几何变换中,有一个课堂练习要求将一个梯形按特定向量进行平移。具体来说,是将示例中的梯形按照长度为 5 且与 x 轴成 30°角的向量进行平移。
1.2 复合变换的矩阵表示问题
在之前的学习中,我们知道关于原点的反转、坐标轴的反射、旋转和缩放等操作都可以用乘法矩阵来表示,因此对一个图形依次进行这些操作的复合操作可以用矩阵的乘积来描述。然而,平移操作是通过加法来表示的,目前还不能纳入矩阵乘法方案,这使得复合操作的表达式在更复杂的问题中变得庞大且繁琐。
例如,要将示例中的梯形绕点 Q(-5, 5)旋转 π/4 角度,我们需要将这个问题分解为一系列基本操作:
1. 进行平移,将点 Q 置于新坐标系的原点。
2. 使用旋转公式围绕新原点进行 π/4 旋转。
3. 将原点平移回其初始位置。
用矩阵形式表示上述操作依次为:
1. (G_1 = G + T * ones(1, n)),其中 (T = \begin{bmatrix}5\ -5\end{bmatrix}),(n = 4)。
2. (G_2 = R(\pi/4) * G_1)。
3. (G_3 = G_2 - T * ones(1, n))。
最终结果可以写成:(G_3 = R(\pi/4) * [(R(\pi/4) + T) * ones(1, 1)] - T * ones(1, n))。
以下是实现上述变换序列的 M - 文件脚本:
超级会员免费看
订阅专栏 解锁全文
1137

被折叠的 条评论
为什么被折叠?



