19、数学与图像处理中的变换及概率理论应用

数学与图像处理中的变换及概率理论应用

一、坐标变换与齐次坐标

1.1 梯形平移问题

在平面几何变换中,有一个课堂练习要求将一个梯形按特定向量进行平移。具体来说,是将示例中的梯形按照长度为 5 且与 x 轴成 30°角的向量进行平移。

1.2 复合变换的矩阵表示问题

在之前的学习中,我们知道关于原点的反转、坐标轴的反射、旋转和缩放等操作都可以用乘法矩阵来表示,因此对一个图形依次进行这些操作的复合操作可以用矩阵的乘积来描述。然而,平移操作是通过加法来表示的,目前还不能纳入矩阵乘法方案,这使得复合操作的表达式在更复杂的问题中变得庞大且繁琐。

例如,要将示例中的梯形绕点 Q(-5, 5)旋转 π/4 角度,我们需要将这个问题分解为一系列基本操作:
1. 进行平移,将点 Q 置于新坐标系的原点。
2. 使用旋转公式围绕新原点进行 π/4 旋转。
3. 将原点平移回其初始位置。

用矩阵形式表示上述操作依次为:
1. (G_1 = G + T * ones(1, n)),其中 (T = \begin{bmatrix}5\ -5\end{bmatrix}),(n = 4)。
2. (G_2 = R(\pi/4) * G_1)。
3. (G_3 = G_2 - T * ones(1, n))。

最终结果可以写成:(G_3 = R(\pi/4) * [(R(\pi/4) + T) * ones(1, 1)] - T * ones(1, n))。

以下是实现上述变换序列的 M - 文件脚本:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值