零代码搞定!DeepSeek R1+RAG本地部署指南:从Ollama配置到知识库构建

前言

自从 DeepSeek 发布后,对 AI 行业产生了巨大的影响,以 OpenAI、Google 为首的国际科技集团为之震惊,它的出现标志着全球AI竞争进入新阶段。从以往单纯的技术比拼转向效率、生态与战略的综合较量。其影响已超越企业层面,涉及地缘政治、产业政策与全球技术治理,它彻底改变“美国主导创新、中国跟随应用”的传统格局,形成多极化的技术权力分布。

DeepSeek 的开源性彻底打破了 OpenAI 等公司通过 API 接口调用,依赖 token 计费的单一规则。因为 DeepSeek 是一个开源的产品,任何人都可通过 GitHub 等途径下载它的核心源代码,这种开源方案有点类似当年的 Android / 鸿蒙发展策略。任何人都可以为 DeepSeek 开发某项额外的功能,为DeepSeek 的茁壮成长贡献自己的一份力量。
它包括了 DeepSeek R1 / DeepSeek V3 / DeepSeek Coder V2 / DeepSeek VL / DeepSeek V2 / DeepSeek Coder / DeepSeek Math / DeepSeek LLM 等多个不同的模型,以适应不同领域的应用。私人开发者可以下载 DeepSeek R1 检心框架进行调试,如果企业调用 DeepSeek 的 API 接口,也需要按 token 收费,然而费用不到 ChatGDP 的十分之一,对企业来说是相当有良心。DeepSeek 的 R1 模型支持本地化部署,用户可以在企业服务器内单独部署自己的 DeepSeek 模型,以适应各自的领域需求。
废话不多说,下面为大家介绍 DeepSeek R1 的本地化部署流程。

一、运行环境要求

‌1. 硬件配置‌

  • 独立显卡(推荐 NVIDIA 1060 以上 GPU显存 ≥ 6GB)‌
  • CPU、内存及存储需满足模型参数规模(如1.5B/7B/14B模型对应不同配置)‌

进入 DeepSeek 的官网 www.deepseek.com/,点激 DeepSeek R1 的模型连接,可以进入 GitHub 的源代码页面。里面可看到 DeepSeek R1 包含了多个不同大小的模型,每个模型需要使用的资源不一样。一般情况下建议使用 1.5B 的轻量级模型,GPU 在 6G~8G 可以尝试使用 7B 的平衡型模型。

在这里插入图片描述

显卡要求可参考下表

在这里插入图片描述

‌2. 依赖工具‌

  • Ollama 或 HFD 部署工具及模型库
  • Docker、Python等基础环境‌

常用下载模型的方法主要有两种,一是通过 Ollama,二是通过 HuggingFace。虽然 HuggingFace 的镜像比较丰富全面,但由于在2023年底,HuggingFace 的官网已经彻底被封,想要下载镜像需要使用 hf-mirror.com 里面的 HFD 工具通过命令执行,对新手来说相对不太友好,所以本文就选择相对轻量级的 Ollama 工具进行安装。

二、安装步骤

1. 安装 Ollama

首先到 Ollama 官网 www.ollama.com 下载 ollama,可以选择 Windows、Linux、masOS 三个不同的版本[

](https://link.juejin.cn/?target=https%3A%2F%2Follama.com%2F)

在这里插入图片描述

下载后点激安装,默认安装路径在 C:\Users\username\AppData\Local\Programs\Ollama 下

在这里插入图片描述

安装完成后,打开 Windows 的环境变量,修改用户变量中的 Path 值,加入 Ollama 的路径 C:\Users\username\AppData\Local\Programs\Ollama

在这里插入图片描述

完成设置后,点激 Ollama.exe 按钮,然后在命令提示符中输入 ollama -v,见到 ollama 版本号代表安装成功。

在这里插入图片描述

也打开浏览器,输入Ollama 运行地址 “http://127.0.0.1:11434”
看到 “Ollama is running” 字样证明 Ollama 已经正常运行。

在这里插入图片描述

2. 下载 deepseek v1 模型

ollama 的命令与 docker 有点类似,输入命令 ollama pull deepseek-r1:7b 系统开始下载模型 deepseek v1:7b
最后看到 success 代表下载成功

在这里插入图片描述

此时输入命令 ollama ls 可以查看已下载的模型

在这里插入图片描述

3. 运行模型

输入命令 “ollama run deepseek-r1:7b” 启动模型
成功启动后就可以尝试输入问题让 deepseek 回答。

在这里插入图片描述

按下 CTRL+D 可以退出当前对话
若要查看当前运行的模型,可以输入 ollama ps

在这里插入图片描述

若要停止模式运行,可输入 ollama stop deepseek-r1:7b。
停止后再输入 ollama ps,可以知道停止命令是否成功

在这里插入图片描述

三、可视化部署

DeepSeek R1 不仅可以通过命令执行,还可通过插件进行可视化部署,布置出与官网应用类似的应用场景。
首先选择浏览器的扩展按键,填入 Page Assist 进行搜索,安装插件。

在这里插入图片描述

完成安装后,若要选择中文版可点激右上角设置按钮,在language中选择 “简体中文”

在这里插入图片描述

在命令提示符输入 ollama run deepseek-r1:7b ,确定 deepseek 模型已经正常运行后, 在 Ollama URL 处填入默认的运行地址 http://127.0.0.1:11434

在这里插入图片描述

回到首页,在选项中可以查到系统中正在运行的模型,选择你要有的模型类别

在这里插入图片描述

此时,你已经可以在本机尽情享受 DeepSeek 给你带来的乐趣。

在这里插入图片描述

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### Ollama + DeepSeek-R1:32B + Docker + RAG Flow/Open WebUI 本地部署 #### 简介 DeepSeek是由阿里云推出的大型语言模型,而`DeepSeek-R1:32B`是指该系列的一个特定版本,拥有约320亿参数规模。为了方便用户使用这个强大的模型,可以通过Docker容器化技术以及RAG (Retrieval-Augmented Generation) 流程来进行本地环境下的快速部署。 #### 部署步骤概述 1. **安装Docker**:如果你还没有安装Docker的话,则需要先下载并按照官方指南完成其设置过程; - [Docker官网](https://www.docker.com/) 2. **获取镜像文件**: 使用Ollama提供的命令行工具或者直接从仓库拉取包含有预训练权重和其他必要组件的docker image ```bash docker pull ollama/deepseek-r1:32b # 假设这是正确的标签名称 ``` 3. **配置数据集与索引构建**: 对于想要增强生成结果准确性的场景来说,在启动之前还需要准备相应的文本资料库,并通过一些额外脚本创建搜索索引来支持检索增强功能(Retrieve Augment Generate)。 4. **运行Web UI服务端口映射等选项自定义** 根据个人需求调整命令参数如开放HTTP访问地址、设定内存限制等等。 ```bash docker run --name my_deepseek_webui -p 7860:7860 ollama/deepseek-webui:latest ``` 5. **打开浏览器连接至localhost指定端口号即可开始体验** 以上即是在个人电脑上搭建基于ollama平台发布的deepseek大模型加web界面交互的整体流程简介。 --- 需要注意的是实际操作过程中可能会遇到各种问题比如依赖项冲突或者是硬件资源不足等问题,建议参考具体产品的文档说明进一步排查解决办法。 --
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值