MCP + n8n构建高效AI工作流

今天来点干货,本文将通过实战来展示MCP的强大拓展能力,当然它的强大之处也离不开外部的支持,比如支撑本次实战的n8n,下面简单介绍下什么是n8n

img


什么是n8n?

n8n是一款开源的工作流自动化平台,旨在帮助用户将各种应用和服务连接起来,实现任务的自动化处理。 其直观的可视化界面使用户无需编写大量代码即可创建复杂的自动化流程,适用于技术和非技术用户。 Github上20k fork以及75k starred, 地址:https://github.com/n8n-io/n8n

img

主要特点:

  • 开源与自托管: n8n采用公平代码许可(Fair-code License),允许用户自托管,确保对数据和部署的完全控制。
  • 广泛的集成能力: 内置超过400个节点,支持与各种应用和服务的集成,包括CRM、社交媒体、数据库等。
  • 可视化工作流设计: 提供拖放式界面,用户可以直观地设计和管理多步骤的自动化流程。
  • AI功能: n8n结合了AI能力,允许用户构建智能代理和高级自动化流程。

应用场景:

  • 数据同步: 在不同平台之间自动同步数据,确保信息一致性。
  • 通知系统: 根据特定事件触发通知,提高响应速度。
  • 报告生成: 定期自动生成并发送报告,节省时间和精力。

本地部署n8n

npx安装n8n

npx n8n

或者通过docker安装

docker volume create n8n_data
docker run -it --rm --name n8n -p 5678:5678 -v n8n_data:/home/node/.n8n 
docker.n8n.io/n8nio/n8n
/.n8n docker.n8n.io/n8nio/n8n

再或者通过源码直接运行

git clone https://github.com/n8n-io/n8n.git
cd n8n
npm install 

笔者通过docker运行,运行成功后可以访问本地网页 http://localhost:5678 能成功打开,说明安装成功了,完成注册登录后,就可以进行下一步了🚀

img


安装MCP n8n社区节点

在默认的n8n环境中,并没有对MCP的支持,需要手动安装一下。

进入个人账号的设置页面

img

点击”社区节点“

img

选择”安装一个社区节点“,并输入n8n-nodes-mcp

img

等待安装结束,就可进入我们的n8n工作流的MCP之旅~


创建AI工作流

进入n8n工作流,安装MCP节点成功后你可以看到如下界面

img

接下来开始创建我们真正的工作流,由于构建工作流的过程稍微有点繁琐,请耐心阅读,如果您已经知道这些过程请直接跳过,进入其他实战

\1. 创建On Chat Message

img

2.添加 AI Agent

img

添加完AI Agent后 会出现一个感叹号(在上图可见),这是提醒你这个Agent还没有配置模型,这时候你需要添加一个模型,笔者接入的是OpenAi的gpt-4o-mini模型

img

3.添加MCP Tool

点击 AI Agent 下面的Tool加号即可添加

注:这一步非常关键,是n8n链接MCP服务的核心通道。

img

点击后会出现如下界面

img

如果你是首次配置则需要配置一些凭证(即哪些MCP服务器)

img

这里你可以配置本地和远程的MCP服务器,笔者以本地的Tavily MCP服务器为例(如果不知道Tavily是什么的自行搜索引擎看看,本文不再赘述,官方地址在这里:https://tavily.com/),使用方法看以上截图,当然我也把比较难打的字给你抠出来方便复制粘贴,当然在你使用本例中的MCP服务,你还需要搞定npx环境,请自行DeepSeek (#.#)

img



npx

-y tavily-mcp@0.1.4

TAVILY_API_KEY=xxxx

申请Tavily API Key在这里:https://tavily.com/

经过一段时间等待你的环境已经好了,那继续下一个流程。

4.再次配置AI Agent

这一步的作用是让AI Agent能使用MCP工具,编辑结果如下:

img

现在有了工具列表,缺少工具执行,所以我们还需要添加一个工具执行,执行步骤和3一样操作只不过细节稍微不同,如图所示:

img

这里用到了n8n一个内置的函数 fromAI, 相关文档在这里(请自行研究):https://docs.n8n.io/advanced-ai/examples/using-the-fromai-function/#let-the-model-fill-in-the-parameter

至此,我们所有的工作基本上已经完成,可以验证效果,笔者本地效果如下:

img

这些当然这些结果你可以存储或者发送到其他服务,完全都有您来决定,n8n的工作流还是很强大的,能帮我们解决一些重复劳动的问题,具体要怎么玩就得发挥你的想象了,你想象有多广,它就能支持多离谱(有点夸张)。


总结

将 Model Context Protocol(MCP)与 n8n 相结合,能够显著增强工作流的自动化和智能化水平。n8n 是一款开源的工作流自动化工具,允许用户通过可视化界面连接不同的服务和应用程序,创建自定义的自动化流程。MCP 则是一种协议,旨在通过标准化的接口,使大型语言模型(LLM)能够与外部工具和服务进行交互。

通过在 n8n 中集成 MCP,用户可以在其工作流中调用各种 MCP 工具,利用 AI 的强大功能来处理复杂任务。例如,用户可以设置一个工作流,自动抓取特定网站的内容,使用 AI 模型进行分析,然后将结果存储或发送到指定位置。这种集成不仅提高了工作效率,还使得非技术用户也能通过简单的配置,利用 AI 技术完成复杂的自动化任务。

社区已经开发了相关的 n8n 节点插件,如 n8n-nodes-mcp,使得在 n8n 中与 MCP 服务器的交互变得更加便捷。这些插件支持多种连接方式,包括 STDIO 和 SSE,用户可以根据需求选择适合的连接方式。

总的来说,将 MCP 与 n8n 结合,能够为用户提供一个强大且灵活的自动化平台,充分利用 AI 的能力,简化复杂的工作流程,提升生产力。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### 如何将 crawl4ai 与 n8n 集成 #### 背景介绍 crawl4ai 是一款专注于自动化爬虫工具的软件,而 n8n 则是一个强大的工作流编排平台。两者结合能够实现从数据采集到处理的一体化流程。为了完成这一目标,通常需要通过 HTTP 请求或其他 API 接口来连接两个系统。 #### 安装与配置 对于初学者来说,推荐使用云服务版本的 n8n 来减少环境配置的工作量[^1]。然而,在某些情况下可能还需要本地部署以满足特定需求。此时可以选择 Docker 或者 npm 进行安装: - **Docker 方式** 如果希望通过容器化的方式简化管理,则可按照如下命令操作: ```bash docker run -d \ --name=n8n \ -p=5678:5678 \ -v /path/to/data:/home/node/.n8n \ -e NODE_ENV="production" \ -e N8N_BASIC_AUTH_ACTIVE=true \ -e N8N_BASIC_AUTH_USER="yourUser" \ -e N8N_BASIC_AUTH_PASSWORD="yourPassword" \ n8nio/n8n ``` - **npm 方式** 对于熟悉 Node.js 开发人员而言,也可以采用全局安装的方法: ```bash npm install n8n -g n8n start ``` #### 实现集成的具体步骤 以下是基于已有的实践案例总结出来的通用解决方案[^2]: 1. **启用 Managed Code Plugin (MCP)** 在启动参数中加入 `-e` 设置 `N8N_COMMUNITY_PACKAGES_ALLOW_TOOL_USAGE=true` ,从而激活 MCP 插件支持自定义脚本执行能力[^3]。 2. **创建新节点用于调用外部API** 借助 n8n 内置的 Webhook 或 Function 类型节点发起针对 crawl4ai RESTful APIs 的请求。例如设置 POST 方法向指定 URL 发送 JSON 数据包触发相应的爬取任务。 3. **解析返回结果并继续下游逻辑** 将接收到的数据进一步加工或者存储至数据库等位置作为后续分析依据的一部分内容。 #### 示例代码展示 下面给出一段简单的 Python 函数用来演示如何利用 requests 库访问远程服务器接口获取资源列表信息: ```python import requests def fetch_data(url, params=None): response = requests.get(url=url, params=params) if response.status_code != 200: raise Exception(f'Request failed with status {response.status_code}') data = response.json() return data['items'] ``` 此函数接受一个基础地址以及查询条件字典形式输入变量,并尝试读取响应主体中的 items 键对应的数组值输出给调用方程序单元测试验证其行为正确与否即可。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值