根据 Qwen 的说法,官方推荐设置:
- Temperature(温度): 0.6
- Top_K: 40(或 20 到 40)
- Min_P: 0.02(可选,但效果良好,llama.cpp 默认值为 0.1)
- Top_P: 0.95
- Repetition Penalty(重复惩罚): 1.0(在 llama.cpp 和 transformers 中,1.0 表示禁用)
- 聊天模板:<|im_start|>user\nCreate a Flappy Bird game in Python.<|im_end|>\n<|im_start|>assistant\n\n
llama.cpp 的推荐设置:为避免无限生成和重复输出,建议调整采样器的顺序,并设置以下参数:
-
采样器顺序: --samplers “top_k;top_p;min_p;temperature;dry;typ_p;xtc”
-
参数设置:
-
- top_k=40
-
- top_p=0.95
-
- min_p=0.1
-
- temperature=0.6
-
- dry
-
- typ_p
-
- xtc
如仍遇到问题,可将 --repeat-penalty 从 1.0 增加到 1.2 或 1.3。
Dry Repetition Penalty:建议在 llama.cpp 中使用 dry 惩罚,以减少重复生成。
其他注意事项:
-
Min_p 和 Temperature 调整:
如仍遇到问题,可尝试将 Min_p 设置为 0.1,Temperature 设置为 1.5。
-
标签未显示:
确保使用正确的聊天模板。
-
Tokenizer Bug 修复:
使用 Unsloth 提供的修复版本,以避免 tokenizer 问题。
-
动态 4-bit 量化:
Unsloth 提供了动态 4-bit 量化版本,可供使用。
GGUF下载地址:
https://huggingface.co/unsloth/QwQ-32B-GGUF
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。