“大模型虽然智能,但似乎在面对各种问题时仍显得力不从心。”
许多用户在运用大模型时,可能都会遇到这样的困惑。
举例来说,询问 DeepSeek 关于即将到来的清明节的习俗,AI 能够信手拈来地提供答案;然而,当要求它制定一份为期三天两晚的清明旅行计划时,其给出的方案似乎总是不够完美。
原因显而易见,在制定旅行计划时,大模型缺少了天气、机票、铁路、导航、酒店等重要数据与工具的接入。这就好比一个极具智慧的大脑,却缺乏了外部的“数据”输入和强健的四肢支持。
在这种情况下,为了提升大模型的能力,通过为其配备多样化的外部工具和数据库,Agent 技术最近2年来备受关注。
然而,要打造一个高度智能的 Agent,通常需要集成大量的外部工具。在传统的 Agent 开发过程中,每增加一个工具,就需要为大模型编写一个新的 API,这使得系统变得越来越复杂。
MCP(模型上下文协议)的问世改变了这一现状。
去年11月,硅谷 AI 巨头 Anthropic 正式发布了MCP——模型上下文协议,使得开发者只需编写一次代码,就能让大模型对接不同的 API、数据库与文件系统,极大简化了模型的配置过程。
正因为如此,MCP 一经推出,便被誉为最强大的标准化接口协议,一夜之间在全球大模型领域掀起热潮,成为新一代 Agent 工具调用的标准协议。
那么,MCP 究竟是什么呢?我们又该如何将其与 Milvus 相结合?
1、模型上下文协议(MCP)是什么
MCP 是一种开源协议,它的目标是对大模型与各类数据源及工具的互联方式进行标准化。
借助 MCP,大模型(LLM)就如同配备了通用的 Type C 充电接口,能够迅速连接到任何支持 MCP 的工具。
从技术架构的角度来看,MCP 实行的是客户端-服务器模型,其中,主应用程序能够与多个工具服务器建立连接:
MCP 主机:指那些希望通过 MCP 来获取数据的程序,例如 Claude 的桌面应用、集成开发环境(IDE)或者 AI 工具(Cursor、Agents 等)。
MCP 客户端:这是与服务器建立一对一连接的协议客户端。
MCP 服务器:通过标准化的模型上下文协议,连接到具有特定功能的轻量级程序。
本地数据源:指的是 MCP 服务器可以安全访问的计算机文件、数据库和服务。
远程服务:MCP 服务器能够连接到互联网上的外部系统(例如,通过 API 进行连接)。
2、为何要将 Milvus 与 MCP 结合使用?
Milvus 不仅在处理大规模数据方面表现出色,其高效的相似性搜索能力和可扩展的向量存储特性,使其成为 Agent 智能体的首选解决方案。
借助 MCP 这位“理想的协调者”,开发者能够在不增加额外工程量的情况下,轻松实现大模型对向量数据库知识的高效、标准化访问。
那么,通过 MCP 整合 Milvus,我们将能够享受到哪些功能呢?
-
复杂的向量相似性搜索能力
-
索引的创建与操作
-
Schema 分析:可以直接在 AI 代理界面中检查集合的 Schema、字段类型和索引设置。
-
实时监控:获取集合的统计信息、实体数量和数据库运行状态指标,确保系统性能最优。
-
动态操作:根据需求变化,即时创建新集合、插入数据或修改 Schema。
-
全文搜索:从 Milvus 2.5 版本开始,新版本均支持全文搜索功能。
3、如何将 Milvus 通过 MCP 与大模型集成?
Milvus MCP 服务器兼容支持 MCP 的各种大模型(LLM)应用程序,其中包括但不限于以下几款:
-
Claude Desktop:由 Anthropic 开发的 Claude 桌面应用程序。
-
Cursor:一款 AI 代码编辑器,其 Composer 功能支持 MCP。
-
自定义 MCP 客户端:任何遵循 MCP 客户端规范开发的应用程序。
在接下来的步骤中,我们将通过 Claude Desktop 和 Cursor 来展示部署过程。
第一步:环境准备
在使用 MCP 服务器之前,请确保已经准备好:
- Python 3.10 或更高版本;
- 正在运行的 Milvus 实例(本地或远程)
- uv 工具
第二步:配置指南
我们推荐,Milvus MCP Server 直接使用 uv 方式运行。以下案例中的 Claude Desktop 和 Cursor 都可以如此配置。
git clone https://github.com/zilliztech/mcp-server-milvus.git
cd mcp-server-milvus
接下来,我们就可以直接运行 server 了,如下所示:
uv run src/mcp_server_milvus/server.py --milvus-uri http://localhost:19530
第三步:与 Claude Desktop 集成
Step1: 从 https://claude.ai/download 安装 Claude Desktop
Step2: 打开你的 Claude Desktop 配置:
macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
Step3:添加以下配置
Step4:重启 Claude 桌面
第四步:与 Cursor 集成
Cursor 可以通过 Composer 中的 Agent 功能支持 MCP工具。我们可以通过两种方式将 Milvus MCP 服务器添加到 Cursor:
方法一 :使用 Cursor 设置 UI
- Step1: 转至 Cursor Settings> Features>MCP
- Step2:+ Add New MCP Server 按钮
- Step3 填写配置: Type 选择 stdio;name 选择milvus;Command 如下
/PATH/TO/uv --directory /path/to/mcp-server-milvus/src/mcp_server_milvus run server.py --milvus-uri http://127.0.0.1:19530
⚠️注意:要使用127.0.0.1而不是 localhost,可以避免潜在的 DNS 解析问题。
方法二:使用项目特定配置(推荐)
Step1:在项目根目录中创建一个. cursor/mcp.json 文件:
mkdir -p /path/to/your/project/.cursor
Step2:创建一个 mcp.json 文件,内容如下:
Step3:重新启动 Cursor 或重新加载窗口
添加 server 后,我们需要点击 MCP 设置中的刷新按钮来激活工具列表。这样,当我们的查询相关内容的时候,Composer Agent 就能自动使用 Milvus 工具。
Step4:验证集成效果
要验证 Cursor 是否已成功与 Milvus MCP 服务器集成:
-
打开 Cursor Settings > Features > MCP
-
检查“Milvus”是否出现在 MCP 服务器列表中
-
验证工具是否集成成功
(例如 milvus_list_collections、milvus_vector_search 等)
4、案例展示:Claude Desktop+MCP+Milvus 效果展示
案例 1:提问
首先,我们给出如下一个提问:
What are the collections I have in my Milvus DB?
Claude 马上就会使用 MCP 在 Milvus 向量数据库中检索和以上提问有关的数据。
案例 2:文档搜索
首先,我们明确一下需求:
Claude 将利用 Milvus 的全文搜索功能来检索相关文档:
Cursor + MCP + Milvus 效果展示
在 Cursor 的 Composer 中,您可以进行如下操作:
Create a new collection called 'articles' in Milvus with fields
for title (string), content (string), and a vector field (128 dimensions)
Cursor 将使用 MCP 服务器执行此操作:
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。