12张架构关系图可视化解析:MCP/RAG/Agent 设计模式全对照

MCP、RAG、Agent 这些概念最近热度飙升,成了 AI 领域的热门话题。然而,我发现身边不少朋友对这些概念还是一知半解。为了帮助大家更好地理解,精心绘制了 12 张简单易懂的架构图解。这些架构图解涵盖了从 MCP 的提示混合机制,到 RAG 的知识检索增强,再到 Agent 的自主决策框架等多个方面。

MCP、RAG、Agent 概念与关系

第一、核心概念

1、RAG(检索增强生成)

定义:RAG 将信息检索与文本生成相结合,创造更准确、信息更充分的回应。

功能:从知识库中检索相关文档,并用它们增强生成过程。

主要优势:使 AI 回应建立在事实信息基础上,减少幻觉(hallucinations)。

组成部分

  • 知识库:存储大量文档和数据。

  • 检索组件:包括嵌入模型和向量数据库,用于高效检索相关文档。

  • 生成模型:基于语言模型,生成最终的文本回应。

2、Agent(智能体)

定义:一种能够感知、决策和行动以实现特定目标的自主 AI 系统。

功能:基于观察和目标在环境中采取行动。

核心组件

  • 感知模块:用于感知环境状态。

  • 推理/决策模块:基于感知信息进行推理和决策。

  • 工具使用能力:调用外部工具和资源以完成任务。

例子

  • 客户服务智能体

  • 数据分析智能体

  • 复杂任务处理智能体

3、MCP(模型上下文协议)

定义:一种连接 AI 助手与外部系统的开放标准,使模型能够获取上下文信息。

功能:实现 AI 模型与外部数据源和工具的标准化通信。

主要优势:提供统一接口,简化 AI 与各类系统的集成。

组成部分

  • 客户端-服务器架构:支持多个客户端与服务器之间的通信。

  • 标准化通信协议:确保不同系统之间的兼容性。

  • 工具调用接口:允许 AI 模型调用外部工具和资源。

第二、核心概念之间的关系

1、RAG ↔ Agent 之间关系

  • RAG 作为 Agent 的知识组件。
  • RAG 常作为智能体(Agent)内的知识组件,为决策提供事实基础。
  • Agent 利用 RAG 访问相关信息,从而做出更明智的决策。

当 RAG 与 Agent 结合使用(即 Agentic RAG)时,Agent 的决策能力和 RAG 的知识能力相互增强,提升整体性能。

2、Agent ↔ MCP 之间关系

  • MCP 作为 Agent 的外部交互接口。
  • MCP 为 Agent 提供与外部系统交互的标准化接口。
  • Agent 可以通过 MCP 调用工具、获取数据,从而扩展其行动能力。
  • MCP 简化了 Agent 与多种外部服务的集成,显著提高了开发效率。

3、MCP ↔ RAG 之间关系

  • MCP 作为 RAG 的外部知识通道。
  • MCP 可以作为 RAG 系统获取外部知识的通道。
  • 通过 MCP 连接的数据源可以丰富 RAG 的知识库。
  • MCP 标准化了 RAG 系统访问各类数据仓库的方式,确保数据的一致性和可访问性。

4、实际实现

在一个完整的 AI 系统中,这些元素协同工作,实现高效、智能的任务处理:

  • Agent 通过 MCP 与外部系统建立连接:Agent 利用 MCP 提供的标准化接口,与外部数据源和工具进行交互。

  • Agent 使用 RAG 检索并整合相关知识:Agent 通过 RAG 访问知识库,检索与任务相关的事实信息,为决策提供支持。

  • 系统结合决策能力和事实信息处理复杂任务:Agent 将检索到的知识与自身的决策能力相结合,处理复杂的任务,生成准确、可靠的回应。

这种整合方法创造出比任何单一组件都更强大、更可靠、更适应性强的 AI 系统,能够理解上下文,检索相关信息,并采取适当行动完成任务。

第三、生活案例

RAG 像一个认真的学生: 想象一个学生写论文。遇到不懂的内容,他不会瞎编,而是去图书馆查找资料,找到相关书籍,然后基于这些可靠信息来写论文。RAG 就是 AI 的“查资料”能力。

Agent 像一个私人助理: 假设你告诉助理:“帮我安排下周去北京的商务旅行。”一个好助理会自己决定需要预订机票、酒店、安排会议时间等,并自己完成这些任务。Agent 就是 AI 的这种“理解目标并自主行动”的能力。

MCP 像一个万能转接头: 你可能有过这种经历:带着国内的充电器去国外,发现插不进插座。这时你需要一个转接头。MCP 就是 AI 的“转接头”,让 AI 能够连接和使用各种外部工具和数据源。

想想你自己如何完成一项复杂任务

  • 你需要知识(类似 RAG):在做任何事情之前,你都需要获取相关的信息和知识。

  • 你需要决策能力(类似 Agent):有了知识后,你需要根据这些信息做出决策和规划。

  • 你需要使用工具的能力(类似 MCP):最后,你需要使用各种工具来执行这些决策。

例如,烹饪一道新菜:你会查菜谱(RAG),根据实际情况调整做法(Agent),使用各种厨具(通过 MCP 连接)。

启发思考

  • 如果 AI 只有 RAG 能力(只会查资料),但不会思考和使用工具:它可以回答一些基于事实的问题,但无法完成复杂的任务。例如,它可以告诉你昨天的股市情况,但无法帮你制定投资策略。

  • 如果 AI 只能思考决策(Agent),但没有可靠的信息来源(RAG):它可能会做出一些基于假设的决策,但这些决策可能不准确。例如,它可以帮你策划旅行,但可能会忽略一些重要的细节。

  • 没有标准接口(MCP),每个工具都需要特殊连接方式:这会给 AI 使用工具带来巨大的挑战,增加开发和维护的复杂性。例如,每次需要使用一个新的工具,都需要重新编写代码来适配。

你能想象这三种能力完美结合的 AI 能帮你完成什么任务吗?

你有一个超级智能助手。这个助手有三种超能力

  • 超级记忆(RAG):不管你问什么,它都能迅速查找到准确的信息,而不是凭空想象或编造答案。比如你问“昨天的股市怎么样”,它会立刻找出真实数据告诉你。

  • 独立思考(Agent):你只需告诉它你想要什么结果,它就能自己思考并决定如何一步步实现。比如你说“帮我策划一次旅行”,它会自动考虑预算、时间、景点等因素并给出完整计划。

  • 万能连接器(MCP):它能够使用各种外部工具和系统。需要发邮件?预订机票?计算复杂数学问题?它都能连接到适当的工具来完成。

当这三种能力结合在一起,你就拥有了一个既知识丰富,又能独立思考,还能使用各种工具的全能助手。这就是现代 AI 系统通过结合 RAG、Agent 和 MCP 所追求的目标。

MCP、RAG、Agent 架构设计图解

第一、概念

img

img

img

img

img

img

img

img

img

第二、关系

img

img

img

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

大模型就业发展前景

根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
在这里插入图片描述字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
在这里插入图片描述
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。

最后

大模型很多技术干货,都可以共享给你们,如果你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值