使用Prophet预言家进行时间序列预测

本文介绍了Facebook开源的Prophet时间序列预测工具,强调其在处理具有季节性和特殊事件影响的数据上的优势,包括模型的结构、优点和局限性,以及如何使用和评估。通过美国能源消耗数据实例展示了Prophet的使用方法和预测性能。
摘要由CSDN通过智能技术生成

prophet是facebook在2017年开源的强大的时间序列预测工具。

prophet(读作 ˈprɒfɪt)这个英文单词的意思是先知,预言家(没错,就是天黑请睁眼的那位😋)。顾名思义,它能够预测未来。

2cd2bab855d1d4145fc294b211feadb0.jpeg

Prophet是一个设计精妙的单层的回归模型,特别适合对具有明显季节周期性(如气温,商品销量,交通流量等)的时间序列进行预测,并具有强大的解释性。

我们将简要介绍Prophet框架的算法原理,并以一个开源的能源消耗时间序列数据预测为例,展示prophet的使用方法和强大能力。

公众号算法美食屋后台回复关键词:prophet,获取本教程notebook代码和数据集下载链接~

预测效果展示:

9d42a4cef4e201691ec5daa70001854a.png

〇,Prophet原理概述

1,prophet的优点:

1, 拟合能力强。可以拟合时间序列数据中的趋势特性,周期特性,以及节假日时间/特殊事件影响等,可以返回置信区间作为预测结果。

2,对噪声鲁棒。趋势项中引入了changepoints,模型的参数量远远小于lstm等深度方案,不容易过拟合,收敛迅速。

3,模型解释性好。提供了强大的可视化分析辅助工具,便于分析趋势,不同周期,不同节假日/特殊事件 各自的贡献。

2,prophet的缺点:

1,不适用协变多维序列。prophet仅仅能够对单个时间序列建模(例如某地气温),不能够对协变的多个序列同时建模(例如沪深300支股票走势)。

2,无法进行自动化复杂特征抽取。受prophet模型相对简单的假设空间的限制,它无法对输入特征进行交叉组合变换等自动化抽取操作。

3,prophet的原理:

prophet是一个加法模型,将时间序列分解成 趋势项,周期项,节假日项/特殊事件影响,以及残差项的组合。

【注:根据需要,也可以将 周期项 和 节假日项/特殊事件影响 设置为乘数,而非加数】

1,其中趋势项被拟合成 分段线性函数(默认) 或者 分段logistic函数(存在上下限的情形,如虫口模型,病毒传播等存在容量上限)。

2,周期项使用有限阶(通常对一个是3到8阶)的傅里叶级数进行拟合,大大减少了参数量,避免对噪声数据过拟合。

3,节假日项/特殊事件项 可以作为点特征或者区间特征引入,并支持自定义不同类型的节假日或事件,还可通过add_regressor引入其它已知序列作为特征,非常灵活。

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight') # For plots

一,准备数据

我们使用的数据集是美国能源消耗数据集。该数据集包含了美国一家能源公司的长达数十年的能源消耗数据,数据分辨率为小时。

1,读取数据

dfdata = pd.read_csv('PJME_hourly.csv',
                   index_col=[0], parse_dates=[0])
dfdata.columns = ['y']  #将预测目标列名称改为y 
dfdata.index.name = 'ds'   #将时间序列名称改为ds
# Color pallete for plotting
color_pal = ["#F8766D", "#D39200", "#93AA00",
             "#00BA38", "#00C19F", "#00B9E3",
             "#619CFF", "#DB72FB"]
dfdata.plot(style='.', figsize=(15,5), color=color_pal[1], title='PJM East')
plt.show()

ae2a850ea09bfb0617784a6310dd492b.png

2, 数据eda

我们设计一些时间日期特征来查看数据的趋势

def create_features(df, label=None):
    """
    Creates time series features from datetime index.
    """
    df = df.copy()
    df['date'] = df.index
    df['hour'] = df['date'].dt.hour
    df['dayofweek'] = df['date'].dt.dayofweek
    df['quarter'] = df['date'].dt.quarter
    df['month'] = df['date'].dt.month
    df['year'] = df['date'].dt.year
    df['dayofyear'] = df['date'].dt.dayofyear
    df['dayofmonth'] = df['date'].dt.day
    df['weekofyear'] = df['date'].dt.isocalendar().week #df['date'].dt.weekofyear
    
    X = df[['hour','dayofweek','quarter','month','year',
           'dayofyear','dayofmonth','weekofyear']]
    if label:
        y = df[label]
        return X, y
    return X

X, y = create_features(dfdata, label='y')

dfXy = pd.concat([X, y], axis=1)
# See our features and target
dfXy.head()
sns.pairplot(dfXy.dropna(),
             hue='hour',
             x_vars=['hour','dayofweek',
                     'year','weekofyear'],
             y_vars='y',
             kind='scatter',
             height=5,
             plot_kws={'alpha':0.05, 'linewidth':0},
             palette='husl'
            )
plt.suptitle('Power Use MW by Hour, Day of Week, Year and Week of Year')
plt.show()

5ecef29d7e13224643b2e803557d9d0b.png

3, 数据分割

split_date = '2015-01-01'
dftrain = dfdata.loc[dfdata.index <= split_date].copy()
dftest = dfdata.loc[dfdata.index > split_date].copy()
dftest \
    .rename(columns={'y': 'TEST SET'}) \
    .join(dftrain.rename(columns={'y': 'TRAINING SET'}),
          how='outer') \
    .plot(figsize=(15,5), title='PJM East', style='.')
plt.show()

dc97878246f90802227df2f280cd8de3.png

二,定义模型

from prophet import Prophet
# model = Prophet()  #使用默认参数

#1,趋势项相关设置

# model = Prophet(growth = 'logistic') #默认是linear
# model = Prophet(changepoints=['2020-01-01','2023-01-01']) #手工设置changepoints
# model = Prophet(n_changepoints=25) 
# model = Prophet(changepoint_range=0.8)
# model = Prophet(changepoint_prior_scale=0.05) #越大越容易转变趋势


#2,周期项相关设置

# model = Prophet(yearly_seasonality='auto')
# model = Prophet(weekly_seasonality=True)
# model = Prophet(daily_seasonality=False)
# model = Prophet(seasonality_mode='multiplicative') #默认是additive
# model.add_seasonality(name='monthly', period=30.5, fourier_order=5, prior_scale=0.1) #手工添加周期项

#3,节假日项相关设置

# model.add_country_holidays(country_name='AU')
# model = Prophet(holidays=dfholidays,holidays_mode='multiplicative') 
# model.add_regressor('temperature') #使用温度特征作为一个回归项因子,需要在训练集和测试集中都知道
from pandas.tseries.holiday import USFederalHolidayCalendar as calendar

cal = calendar()
dfdata['date'] = dfdata.index.date
dfdata['is_holiday'] = dfdata.date.isin([d.date() for d in cal.holidays()])
dfholidays = dfdata.loc[dfdata['is_holiday']] \
    .reset_index() \
    .rename(columns={'Ddate':'ds'})
dfholidays['holiday'] = 'USFederalHoliday'
dfholidays = dfholidays.drop(['y','date','is_holiday'], axis=1)
dfholidays['ds'] = pd.to_datetime(dfholidays['ds'])

dfholidays.head()
model = Prophet(holidays=dfholidays)

三,训练模型

model.fit(dftrain.reset_index(), iter=10000, show_console=True)

67b002c3c5cb6f8219900a9c638c871a.png

四,使用模型

# dftest = model.make_future_dataframe(periods=180)
dftest_fcst = model.predict(df=dftest.reset_index())
# Plot the forecast
f, ax = plt.subplots(1)
f.set_figheight(5)
f.set_figwidth(15)
ax.scatter(dftest.index, dftest['y'], color='r') #真实值
fig = model.plot(dftest_fcst,
                 ax=ax) #预测值以及范围
plt.show()

426a24f67f20ba208f0de6b7fa8cb259.png

# 加法模型结构
display(dftest_fcst.tail())
cols = [x for x in dftest_fcst.columns if 'lower' not in x and 'upper' not in x] 
print(cols)
# yhat = trend+additive_terms
print((dftest_fcst['yhat']-dftest_fcst.eval('trend+additive_terms')).sum())

# additive_terms = daily+weekly+yearly+multiplicative_terms+USFederalHoliday
print((dftest_fcst['additive_terms']-dftest_fcst.eval('daily+weekly+yearly+multiplicative_terms+USFederalHoliday')).sum())
0.0
-9.681855317467125e-11
# model explaination
fig = model.plot_components(dftest_fcst)

f666e42f77363486d22bf28d49b56bbb.png

f517ef10b5d30367a3698b7e9d1dcd30.png

8ccfec54c2eef1d6260eb339a72f6d46.png

五,评估模型

from sklearn.metrics import mean_squared_error, mean_absolute_error

def mean_absolute_percentage_error(y_true, y_pred): 
    """Calculates MAPE given y_true and y_pred"""
    y_true, y_pred = np.array(y_true), np.array(y_pred)
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100



mse = mean_squared_error(y_true=dftest['y'],
                   y_pred=dftest_fcst['yhat'])

mae = mean_absolute_error(y_true=dftest['y'],
                   y_pred=dftest_fcst['yhat'])
mape = mean_absolute_percentage_error(y_true=dftest['y'],
                   y_pred=dftest_fcst['yhat'])

print('mse = ',mse)
print('mae = ',mae)
print('mape = ',mape)
mse =  43889420.377070874
mae =  5190.580798417535
mape =  16.5407058132873
#真实值和预测值差异比较
ax = dftest_fcst.set_index('ds')['yhat'].plot(figsize=(15, 5),
                                                 lw=0,
                                                 style='.')
dftest['y'].plot(ax=ax,
                  style='.',
                  lw=0,
                  alpha=0.2)
plt.legend(['Forecast','Actual'])
plt.title('Forecast vs Actuals')
plt.show()

f249e22b6f9694012aa460d522c1d28a.png

六,保存模型

import json 
from prophet.serialize import model_to_json, model_from_json
# save
with open('prophet_model.json', 'w') as md:    
    json.dump(model_to_json(model), md)
    
    
# load
with open('prophet_model.json', 'r') as md:   
    model_loaded = model_from_json(json.load(md))

万水千山总是情,点个在看行不行!

公众号算法美食屋后台回复关键词:prophet,获取本教程notebook代码和数据集下载链接~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值