一、池化层
池化层(Pooling Layer)是卷积神经网络(Convolutional Neural Networks, CNNs)中的一个重要组成部分,主要用于减少输入数据的空间尺寸(例如,图像的宽度和高度),同时保持其最重要的信息。这一过程称为下采样(downsampling)或者降维。池化操作通过提取特征图(feature maps)的摘要信息来实现,这些摘要信息通常是原特征的统计量,如最大值、平均值或其他聚合方式的结果。主要目的和作用包括:
- 减少计算量和参数数量:通过减小特征图的尺寸,池化层显著减少了后续层所需的计算资源和模型中的参数数量,这有助于减轻过拟合并加速训练过程。
- 增加感受野:池化操作扩大了网络对输入数据的感受野,使得网络能够捕获更广阔的上下文信息,这对于识别较大的图像结构或模式很有帮助。
- 提供位置不变性:由于池化是对局部区域进行操作,它降低了网络对特征位置的敏感度,使模型对输入中的平移、旋转等变换更加鲁棒。
- 抑制噪声:通过聚合区域内的特征,池化能减少个别像素噪声的影响,提取更具代表性的特征。