推荐!【大模型书】从零开始大模型开发与微调:基于PyTorch与ChatGLM

今天又来给大家推荐一本大模型方面的书籍<从零开始大模型开发与微调:基于PyTorch与ChatGLM>。

本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。
在这里插入图片描述

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:<从零开始大模型开发与微调 基于PyTorch与ChatGLM > PDF 免费分享 免费获取)]👈

😝有需要的小伙伴,可以V扫描下方二维码免费领取==🆓

在这里插入图片描述

【目录】

第1章新时代的曙光—人工智能与大模型1
第2章PyTorch2.0深度学习环境搭建8
第3章从零开始学习PyTorch2.027
第4章一学就会的深度学习基础算法详解44
第5章基于PyTorch卷积层的MNIST分类实战71
第6章可视化的PyTorch数据处理与模型展示91
第7章ResNet实战106
第8章有趣的词嵌入120
第9章基于循环神经网络的中文情感分类实战160
第10章从零开始学习自然语言处理的编码器169
第11章站在巨人肩膀上的预训练模型BERT193
第12章从1开始自然语言处理的解码器206
第13章基于PyTorch2.0的强化学习实战232
第14章ChatGPT前身—只具有解码器的GPT-2模型250
第15章实战训练自己的ChatGPT291
第16章开源大模型ChatGLM使用详解305
17章开源大模型ChatGLM高级定制化应用实战312

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模…

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:<从零开始大模型开发与微调 基于PyTorch与ChatGLM > PDF 免费分享 免费获取)]👈

😝有需要的小伙伴,可以V扫描下方二维码免费领取==🆓

在这里插入图片描述

<think>好的,用户想了解从零开始配置大语言模型的方法和步骤。首先,我需要回忆之前提供的引用内容,看看有没有相关的步骤。引用[2]提到了基于ChatGLM-6b的本地部署步骤,引用[3]讨论了预训练、微调和模型部署。用户可能希望得到一个系统的教程,从环境准备到模型部署的全流程。 首先,确定用户的需求层次。他们可能刚入门,需要详细的步骤,包括硬件和软件的准备。需要分阶段讲解,比如环境配置、模型选择、下载、部署、测试和优化。同时,用户可能关心如何选择适合的模型,比如参数量硬件资源的匹配,这里需要结合引用[2]中的ChatGLM-6b例子,说明不同模型的选择。 然后,要确保步骤清晰,每个部分都有具体操作,比如安装PythonPyTorch,使用Git拉取代码库。可能需要提醒用户注意依赖安装和版本兼容性,避免踩坑,这部分引用[2]提到“步骤详细无坑版”,应该强调这一点。 接下来,模型部署部分需要涉及加载模型、推理示例,可能提供代码片段,如使用transformers库,并解释参数设置。测试和优化部分可以参考引用[3],提到模型剪枝、量化和性能测试,确保模型高效运行。 还要考虑用户的实际应用场景,比如本地服务器或云服务,是否需要API封装。最后,资源推荐和常见问题解答能帮助用户进一步学习和解决问题。 需要检查是否有遗漏的步骤,例如环境配置中的CUDA版本是否PyTorch匹配,模型下载的来源是否可靠,以及部署后的测试方法是否全面。同时,确保语言通俗易懂,避免过于专业的术语,让新手也能跟随操作。</think>### 从零开始配置大语言模型的详细步骤 #### 一、基础环境配置 1. **硬件要求** - GPU推荐:至少NVIDIA RTX 3090(24GB显存)以上,支持FP16/FP32混合精度计算 - 内存:建议64GB及以上 - 存储:需预留500GB+空间用于模型权重和数据集[^2] 2. **软件依赖** ```bash # 安装Python 3.8+和PyTorch conda create -n llm python=3.8 conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch pip install transformers datasets accelerate sentencepiece ``` #### 二、模型选择获取 1. **模型类型对比** | 模型类型 | 参数量范围 | 适用场景 | |---------|------------|----------| | 基础版 | 1B-7B | 本地测试/个人使用 | | 标准版 | 7B-13B | 企业级应用 | | 增强版 | 13B-175B | 科研/云服务 | 2. **下载预训练模型** ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) ``` #### 三、模型部署实践 1. **基础部署流程** ```python # 模型加载示例 model = model.half().cuda() # 半精度优化显存占用 response, history = model.chat(tokenizer, "你好", history=[]) ``` 2. **量化部署(8-bit)** ```python from accelerate import infer_auto_device_map model = load_8bit_model("chatglm-6b-int8", device_map="auto") ``` #### 四、性能优化方案 1. **推理加速技术** - Flash Attention优化:提升自注意力机制计算效率 - Paged Attention:显存分页管理技术 $$ \text{Throughput} = \frac{\text{Batch Size} \times \text{Seq Length}}{\text{Latency}} $$ 2. **显存优化策略** ```python # 梯度检查点技术 model.gradient_checkpointing_enable() # 混合精度训练 scaler = torch.cuda.amp.GradScaler() ``` #### 五、应用场景适配 1. **API服务封装** ```python from fastapi import FastAPI app = FastAPI() @app.post("/generate") async def generate_text(prompt: str): inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs) return {"result": tokenizer.decode(outputs[0])} ``` 2. **领域微调方案** ```python # 使用LoRA微调 from peft import LoraConfig, get_peft_model lora_config = LoraConfig(r=8, lora_alpha=16) model = get_peft_model(model, lora_config) ``` #### 六、工具链推荐 1. **开发工具** - 训练框架:Deepspeed、Megatron-LM - 监控工具:Weights & Biases、TensorBoard - 部署工具:Triton Inference Server
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值