今天,这篇咱们先看看,如何构建一个AI私人知识库,把我们工作的历史数据构建为知识库,这样直接提问它,获取专业服务于个人的答案,效率直接起飞。
构建知识库一种方法是使用LangChain,编写100行内代码,就可以自己开发一个基本的知识库,自己动手,丰衣足食。
所以建议读者朋友们,一定要学习一些Python编程,应用人工智能,不会点Python编程,可能就只能借助工具,但工具只能解决通用问题。
LangChain 是一个用于构建语言模型应用程序的工具链,专注于将各种功能(如 聊天机器人 、知识库等)链接在一起。 如果您有兴趣使用 LangChain 和大型语言模型(如 GPT 或 BERT)构建个人知识库,可以遵循一个结构化的方法来整合这些技术。
下面是一个结合代码和说明的完整指南,展示如何构建一个私人知识库。
步骤 1: 安装 LangChain
首先,您需要在您的环境中安装 LangChain。使用 pip 安装最简单:
代码语言:javascript
pip install langchain
步骤 2: 配置 LangChain 使用大型语言模型
LangChain 通过与 Transformer 模型(如 GPT-3、GPT-4 或 BERT)的接口,允许用户创建强大的应用程序。配置 LangChain 以使用这些模型,您需要获取相应的 API 访问权限,并在 LangChain 中进行配置。以 OpenAI 的 GPT 模型为例:
代码语言:javascript
from langchain.chains import LangChain
from langchain.clients import OpenAI
# 初始化 OpenAI 客户端
client = OpenAI(api_key="your_openai_api_key")
# 使用该客户端初始化 LangChain
chain = LangChain(client=client)
步骤 3: 构建和训练您的知识库
LangChain 允许您整合和利用个人知识库。您可以从文档、书籍或其他资源中提取信息,创建一个结构化的知识库。 下面是如何将文档转换为知识库的一个示例:
代码语言:javascript
from langchain.schema import Document
# 创建文档实例
docs = [
Document(content="这是关于机器学习的介绍。", metadata={"title": "机器学习"}),
Document(content="这是关于自然语言处理的信息。", metadata={"title": "自然语言处理"})
]
# 将文档加入知识库
chain.add_documents(docs)
步骤 4: 查询您的知识库
一旦您的知识库准备就绪,您就可以开始查询它以获取信息:
代码语言:javascript
# 查询知识库
response = chain.ask("什么是机器学习?")
print(response)
步骤 5: 进一步开发和优化
LangChain 提供了扩展性,您可以通过训练自定义模型、添加更多文档和改进查询处理来进一步优化您的知识库。 此外,您还可以集成多个数据源和语言模型,以创建更复杂、更有效的应用。
结论
通过 LangChain 和大型语言模型,您可以创建一个强大的私人知识库,这篇文章咱们先看看构建私人知识库得基本步骤,大家先初步了解这个脉络。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓