从零开始学 Dify- RAG 知识库系统设计详解

RAG(检索增强生成)知识系统是 Dify 的核心组件,它使 AI 应用程序能够检索和利用外部知识。该系统管理从文档提取到知识检索的整个流程,支持不同的索引技术、文档处理方法和检索策略。

接下来将分别介绍各个子系统:

模型提供者系统(Model Provider System) ✅

RAG 知识系统(RAG Knowledge System) ✅

对话系统(Conversation System)

工作流系统(Workflow System)

 

架构概述

RAG 知识系统遵循三阶段提取-转换-加载 (ETL) 流程进行文档处理,并结合复杂的检索机制进行知识访问。

RAG 系统架构图

RAG(检索增强生成)知识系统使应用程序能够通过以下方式利用基于文档的知识:

  • 文档提取 :处理各种文档格式

  • 分块和嵌入 :将文本转换为矢量表示

  • 知识检索 :查找与用户查询相关的信息

图片

数据集管理

数据集结构

数据集是 RAG 知识体系的基本组织单元。每个数据集包含文档,文档被划分为多个段,以便于索引和检索。

图片

数据集创建

为了创建数据集,系统接受包括名称、描述、索引技术和检索配置在内的参数。

POST /datasets

数据集创建工作流程:

  1. 验证参数

  2. 创建数据集记录

  3. 如果使用高质量索引,请配置嵌入模型

  4. 设置检索配置

  5. 设置权限

索引技术

该系统支持两种主要索引技术:

技术

描述

向量数据库

Embedding 模型

用例

high_quality

使用嵌入模型将文本转换为向量

必需

必需

更好的语义理解,处理细微的查询

economy

使用基于关键字的倒排索引

不需要

不需要

更低的资源占用,精准的关键字匹配

文档形式

文档可以以三种不同的形式进行处理和索引:

形式

描述

索引方法

text_model

直接嵌入的默认文本文档

直接嵌入文档内容

qa_model

问答对

生成问答对并嵌入问题

hierarchical_model

 (父子模型)

带有子段的父块

创建具有父块和子块的层次结构

文档处理 Pipeline

文档处理管道遵循提取-转换-加载(ETL)模式:

图片

提取阶段

提取阶段处理不同的数据源:

  1. 上传文件 :处理上传的文件,如 PDF、DOCX 等。

  2. Notion 导入 :从 Notion 页面提取内容

  3. 网站抓取 :从抓取的网站中提取内容

提取过程将不同的内容源规范化为统一的文本文档格式。

转换阶段

转换阶段处理:

  1. 文本清理 :根据配置的规则删除多余的空格、URL、电子邮件

  2. 分割(Segmentation) :根据配置的规则将文档分成块

  3. 格式化 :根据文档形式(文本、问答、分层)准备索引文本

关键分割参数:

  • 分隔符(Separator) :用于分割文本的字符序列(默认值: \n\n )

  • 最大令牌数(Max Tokens) :每个段的最大令牌数(默认值:1024)

  • 块重叠(Chunk Overlap) :段之间的标记重叠(默认值:50)

加载阶段

  1. 将片段保存到数据库

  2. 为所有文档创建关键字索引

  3. 为了实现高质量索引,生成嵌入并将其存储在向量数据库中

该过程包括:

  • 为段创建数据库记录

  • 使用配置的嵌入模型生成文本嵌入

  • 建立搜索索引(关键字和/或向量)

检索系统

检索系统负责根据用户查询从索引数据集中查找相关信息。

检索方法

系统支持多种检索方式:

方法

描述

要求

优势

语义搜索(Semantic Search)

使用向量相似性来查找语义相关的内容

嵌入模型,向量数据库

最适合基于含义的查询

关键词搜索(Keyword Search)

使用精确关键字匹配

关键词索引

适合精确的术语搜索

全文搜索(Full-Text Search)

使用全文索引技术

全文索引

平衡精度和召回率

混合搜索(Hybrid Search)

结合多种方法

所有索引

最佳整体表现

检索策略

系统支持两种主要的检索策略:

  1. 单一检索(Single Retrieval) :使用带有 AI 模型的单一数据集来路由查询

  2. 多重检索(Multiple Retrieval) :使用可配置的权重和评分在多个数据集中进行搜索

图片

结果处理

  1. 格式化为文档上下文

  2. 可能使用重新排序模型进行重新排序

  3. 根据相关性阈值进行评分和过滤

  4. 按相关性排序

  5. 准备返回调用应用程序

与工作流集成

RAG 知识系统通过知识检索节点与 Dify 的工作流系统集成:

图片

知识检索节点:

  1. 从工作流中获取查询输入

  2. 配置检索参数

  3. 调用数据集检索系统

  4. 将格式化的知识返回到工作流

API 集成

服务 API

RAG 知识系统公开了 RESTful API 以与客户端应用程序集成:

接口

Method

描述

/datasets

POST

创建新数据集

/datasets

GET

列出可用数据集

/datasets/{dataset_id}

GET

获取数据集详细信息

/datasets/{dataset_id}

POST

更新数据集设置

/datasets/{dataset_id}

DELETE

删除数据集

/datasets/{dataset_id}/document/create-by-text

POST

从文本创建文档

/datasets/{dataset_id}/document/create-by-file

POST

从文件创建文档

/datasets/{dataset_id}/documents/{document_id}/update-by-text

POST

通过文本更新文档

控制台 API

对于内部控制台使用,存在其他端点:

接口

Method

描述

/console/datasets

多种方式

控制台的数据集管理

/console/datasets/{dataset_id}/documents

多种方式

文档管理

/console/datasets/{dataset_id}/documents/{document_id}/segments

多种方式

段管理

速率限制和配额

该系统实施速率限制和配额执行,特别是在云部署中:

知识检索速率限制

对知识检索操作强制实施速率限制

# Simplified rate limiting logic
knowledge_rate_limit = FeatureService.get_knowledge_rate_limit(tenant_id)
if knowledge_rate_limit.enabled:
    current_time = int(time.time() * 1000)
    key = f"rate_limit_{tenant_id}"
    redis_client.zadd(key, {current_time: current_time})
    redis_client.zremrangebyscore(key, 0, current_time - 60000)
    request_count = redis_client.zcard(key)
    if request_count > knowledge_rate_limit.limit:
        # Add rate limit record and return error

资源限制

对各种资源实施限制:

资源

描述

执行点

向量空间

限制嵌入存储

在文档创建/索引期间

Documents

限制文档数量

文档上传期间

知识率

限制检索频率

在知识检索过程中

总结

RAG 知识系统是 Dify 中用于知识索引和检索的综合解决方案。它提供了灵活的文档处理、索引技术和检索策略选项,使其能够适应各种用例。该系统的模块化架构允许与工作流和对话系统等其他组件无缝集成。

参考资料

https://github.com/langgenius/dify

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值