图卷积网络-第二课(图神经网络概论)

图卷积网络GCN是一种能处理图结构数据的神经网络,它利用邻接矩阵和节点特征进行卷积操作。GCN常用于节点分类和图分类任务,其感受野为当前节点的一阶邻域。与传统CNN相比,GCN的卷积操作涉及到图的结构信息。在预处理阶段,需要生成邻接矩阵、度矩阵和特征矩阵。损失函数通常采用交叉熵,层数的增加会扩展节点的影响力范围,但过深可能导致性能下降。
摘要由CSDN通过智能技术生成
图卷积网络GCN是一种可以直接作用于图结构的卷积神经网络,他可以很好的利用相关的结构信息。
图卷积可以很好的解决节点分类问题(如文档分类)。
卷积神经网络与图卷积神经网络的对比。
卷积神经网络的感受野跟卷积核相关,一般是3×3或者5×5。而图卷积神经网络的感受野为当前节点的一阶邻域。
图卷积神经网络的数学表达
可以看出,跟普通卷积神经网络类似。都是一个卷积线性操作加一个非线性激活函数。只是参与卷积的是权重与结构信息和特征信息。
卷积网络与图卷积网络的感受野
卷积网络跟卷积核有关,图卷积网络的感受野就是当前节点的一阶邻域。
卷积网络与图卷积网络的应用
卷积网络常用语图像分类和语义分割。图卷积网络用于图的分类和节点的分类。
图卷积网络的基础思想
图卷积网络的基础思想是,将当前节点与一阶邻域节点的信息进行一个融合(这里看算法),融合后的结果送入卷积网络参与运算。
图卷积神经网络中层的概念
图卷积网络中,每一层的概念是对当前节点一阶邻域的处理。
图的表示:
图的保存方式为邻接矩阵。有向图和无向图的表示略有不同,无向图是个对称阵。
另一个重要的矩阵:度矩阵
度矩阵用于保存图中每个节点的度,是个对角阵。需要注意的是,无向图中一个节点指向自身,产生的度按2来计算。
图神经网络的预处理:
拿到一个图结构数据,首先需要生成邻接矩阵(N×N),度矩阵(N×N),及特征矩阵(N×k)。
第二步是对邻接矩阵进行升级,给邻接矩阵加一个乘以系数的单位阵。
因为原始的邻接矩阵对角线上均为0,乘以特征矩阵后每个节点自身的特征就消失了,所以要提前加一个单位阵。这个系数为超参,越大说明当前节点自身的特征越重要。
第三步对度矩阵D进行改造
通过新的邻接矩阵计算出对应的度矩阵,再计算出度矩阵的逆矩阵(因为度矩阵都是大于1的,参与运算后越乘值越大,所以要取逆)。
第四步对影响因子进行重新缩放。
将新的邻接矩阵左右各乘以邻接矩阵的逆矩阵,缩放的同时,也有稀疏的作用。
看一下几个矩阵相乘的细节。
此处有点信息论的赶紧,度越小的节点影响力越大,度越大的节影响力越小。度越大说明连接的节点多,该节点没啥特色。
因为D的逆矩阵左右各乘了一次,为了保持平衡,改为乘以D的-1/2矩阵,但是大小关系等没什么变化,
这里做了总结,当前节点与一阶邻域节点之间的关系是怎么提出来的。
这个是图卷积网络的数学模型
可看出,跟卷积神经网络的数学模型很类似,最后是一个softmax,索命最后的结果是个分布。
图卷积神经网络的损失函数
用的是交叉熵损失函数,测量的是所有节点分类的误差和。
层对图卷积神经网络的影响。
每添加一层,索命当前节点的影响力拓展了一阶邻域。但并不是层数越深越好,随着层数的增加,准确率会突然下降。
GNN的基准化
GNN的基准化是提出一个衡量标准,用于衡量各GNN的性能。保证各模型在相同的条件下进行性能对比,提升模型性能的置信度。
超像素
超像素是指将图中距离相近,意义相同像素合并,成为超像素。可用在基于语义的压缩表征等方面。通过超像素与图的概念,也可完成图像的分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pzb19841116

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值