RON: Reverse Connection with Objectness Prior Networks for Object Detection

RON: Reverse Connection with Objectness Prior Networks
for Object Detection

针对目标检测的基于目标先验网络反向连接

参考http://tongtianta.site/paper/6729

https://zhuanlan.zhihu.com/p/33128624

https://blog.csdn.net/linolzhang/article/details/75137050

摘要

我们提出了RON,一种用于通用对象检测的简单有效的框架。我们的动机是巧妙地将基于区域提出的最佳的方法(例如,更快的R-CNN)和无区域提出的(例如,SSD)方法相关联。在全卷积结构下,RON主要关注两个基本问题:(a)多尺度对象定位和(b)负样本挖掘。为了解决(a),我们设计了反向连接,使网络能够检测多层CNN上的对象。为了处理(b),我们提出了目标先验去减少目标的搜索空间。我们通过多任务损失函数联合优化反向连接,目标先验和目标检测,因此RON可以直接预测各种feature map的所有位置的最终检测结果。

针对富有挑战性的PASCAL VOC 2007PASCAL VOC 2012MS COCO基准测试的广泛实验证明了RON的竞争性能。具体而言,使用VGG-16和低分辨率384×384输入尺寸,PASCAL VOC 2007网络获得81.3mAPPASCAL VOC 2012数据集获得80.7mAP当数据集变得更大且更加困难时,它的优势会增加,正如MS COCO数据集上的结果所证明的那样。在测试阶段使用1.5G GPU内存,网络速度为15 FPS,比快速R-CNN3倍。代码将在https://github.com/ taokong / RON上提供。

简介

我们目睹了物体探测领域的重大进展,主要得益于深度网络。目前基于深度网络的顶级目标检测框架可以分为两个主要流:基于区域的方法[11] [23] [10] [16]和无区域方法[22] [19]

基于区域的方法将对象检测任务划分为两个子问题:第一阶段,在深度卷积神经网络(CNN)上产生专用区域提议生成网络,其可以生成高质量的候选框。然后在第二阶段,设计区域子网络以对这些候选框进行分类和重新分类。使用非常深的CNN [14] [27]Fast R-CNN[10] [23]最近在主流物体检测基准测试中表现出高精度[7] [24] [18]区域建议阶段可以拒绝大多数背景样本,因此用于物体检测的搜索空间大大减少[1] [32]通常开发多阶段训练过程用于区域建议生成和后检测的联合优化(例如,[4] [23] [16])。。在Fast R-CNN [10]中,区域性子网络重复评估数千个区域提议以生成检测分数。Fast R-CNN管道下,更快的R-CNN与检测网络共享全卷积特征,以实现几乎无成本区域提议。最近,R-FCN [4]试图通过添加位置敏感的得分图来使更快的R-CNN的非共享的每RoI计算可共享。从来没有,R-FCN仍然需要从区域提案网络[23]产生的区域提案。为确保检测准确性,所有方法都将图像调整为足够大的尺寸(通常最短边为600像素)。在训练和推理时间将图像输入深度网络时,这在某种程度上是资源/时间消耗。例如,对于VGG-16网络,使用大约5GBGPU内存,使用更快的R-CNN进行预测通常需要每个图像0.2[27]

 

 

另一个解决方案系列是无区域方法[22] [19]这些方法将对象检测视为单次拍摄问题,通过全卷积网络(FCN)直接从图像像素到边界框坐标。这些探测器的主要优点是效率高。SSD [19]起源于YOLO [19]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值