MATLAB Robotics System Toolbox学习笔记(二):机器人学数学基础

这篇教程介绍了MATLAB Robotics System Toolbox中关于机器人位姿和坐标变换的基础知识,包括三维空间的位置和姿态描述,旋转和平移变换,以及姿态的其他表示方法如角坐标和向量表示法。详细讨论了旋转矩阵、齐次变换矩阵的计算及其在MATLAB中的实现。

本教程基于 MATLAB R2020a 版本

参考书籍:《机器人仿真与编程技术》 杨辰光

1 三维空间中的位置与姿态

通常来说,机器人指的是至少包含有一个固定刚体和一个活动刚体的机器装置。其中,固定的刚体称为基座,而活动的刚体称为末端执行器。在两个部件之间会有若干连杆和关节来支撑末端执行器,并使其移动到一定的位置。

位姿: 机器人上每个关节在每一时刻的位置和姿态

  1. 位置描述

    在三维空间中建立某一坐标系,于是空间中的任何一个点就可以通过一个 3×13 × 13×1 的位置矢量来确定。
    P=[pxpypz] P=\begin{bmatrix}p_x \\ p_y\\ p_z \end{bmatrix} P=pxpypz
    在 MATLAB 中我们可以将一个三维空间的点表示出来,代码如下:

    plot3(1,1,3,'x') % plot3(1,1,3,'o') 
    % 后面的‘o’指使用圆圈画出这个点,‘x’指使用叉画出这个点
    grid on
    

    显示效果如下:

    在这里插入图片描述

  2. 姿态描述

    空间中的物体还需要描述它的姿态(也称为方位),这用固定在物体上的坐标系 { B}\{ B \}{ B} 来描述。为了规定空间某刚体 BBB 的方位,设一坐标系 { B}\{ B \}{ B} 与此刚体固连; 用三个单位矢量来表示 xB,yB,zB\textbf{x}_B,\textbf{y}_B,\textbf{z}_BxB,yB,zB 坐标系 B{ B }B 的主轴方向,因此物体相对于参考坐标系 { A}\{ A \}{ A} 的姿态可以用矢量 xB,yB,zB\textbf{x}_B,\textbf{y}_B,\textbf{z}_BxB,yB,zB 相对于参考坐标系{ A } 的方向余弦组成的3 X 3 矩阵来表示,这个矩阵 BAR_B^A\textbf{R}BAR 称为旋转矩阵。
    BAR=[xByBzB]=[r11r12r13r21r22r23r31r32r33] _B^A\textbf{R}=\begin{bmatrix} \textbf{x}_B & \textbf{y}_B & \textbf{z}_B\end{bmatrix}=\begin{bmatrix}r_{11} & r_{12} & r_{13} \\r_{21} & r_{22} & r_{23}\\r_{31} & r_{32} & r_{33}\end{bmatrix} BAR=[xByBzB]=r11r21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值