Qwen2-1.5B-Instruct量化评估

  1. 朴素量化
    lm_head需要w8a8, w4a8g32和w4a16g32损失太大。
    w4需要per-block, w8需要per-channel

  2. omniquant 优化w4
    per-channel损失较大,需要用per-block

  3. bmm量化
    bmm损失在2-3%

  4. mxint量化
    w4a8g32-mxint太差,w8a8g32-mxint效果可以

### 关于 Qwen2.5-VL-72B-Instruct-AWQ 模型微调的方法 对于 Qwen2.5-VL-72B-Instruct-AWQ 模型的微调,可以采用基于 AWQ (Adaptive Weight Quantization) 技术的方式来进行参数优化和训练。AWQ 是一种先进的权重量化方法,能够在保持较高精度的同时显著降低模型大小和计算成本。 以下是关于该模型微调的关键点: #### 数据准备 为了确保微调的有效性,需准备好高质量的数据集用于监督学习或指令调整。数据应覆盖目标应用场景中的各种任务类型[^1]。 #### 环境搭建 利用 Docker 容器化技术来创建稳定的运行环境是非常推荐的做法。这有助于隔离依赖项并简化部署流程[^3]。 #### 配置文件设置 当涉及到多GPU分布式训练时,可以通过编写 shell 脚本来定义必要的启动选项。例如,在 `api_server.sh` 中指定设备可见性、模型路径以及其他重要参数如张量并行度 (`--tensor-parallel-size`) 和流水线并行度 (`--pipeline-parallel-size`) 等[^4]。 下面是一个简单的 Python 代码片段展示如何加载预训练模型以及执行基本前向传播操作: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct-AWQ") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct-AWQ", torch_dtype=torch.float16) input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0])) ``` 注意上述代码仅作为演示用途,请根据实际情况修改相应部分以适应具体需求。 #### 训练过程控制 在实际训练过程中可能还需要考虑以下几个方面: - **Learning Rate Scheduler**: 使用适当的学习率调度策略可以帮助网络更快收敛. - **Gradient Clipping**: 对梯度施加裁剪可防止爆炸现象发生从而提高稳定性. 最后提醒一点就是一定要保存好各个阶段产生的 checkpoint 文件以便后续恢复或者评估使用效果怎样[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值