正交矩阵的定义和性质、正定矩阵如何判定、线性代数中的重要考点

正交矩阵(Orthogonal matrix)是指矩阵的转置和其逆矩阵相等的矩阵,即A^T=A^(-1)。

正定矩阵(Positive definite matrix)是指对于任意的非零向量x,x^TAx>0,即对于矩阵A的每一个特征值均为正数。

正交矩阵的性质有:

  1. 对于任意的两个向量x和y,都有x^Ty=0,即x和y是正交的。

  2. 对于任意的向量x,都有x^TAx=x^Tx,即矩阵A不会改变向量的长度。

  3. 矩阵A的行向量和列向量都是单位向量。

正定矩阵的判定方法有:

  1. 矩阵A的特征值均为正数,则A为正定矩阵。

  2. 矩阵A的行列式值大于0,则A为正定矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值