什么是R方?这6张图会让你终身难忘~

什么是R

在回归模型中,因变量(y)总的方差(信息)可以被称作总平方和(Total sum of squares,TSS),它由两部分组成[1]:

1. 模型可以解释的那部分信息(Model sum of squares, MSS

2. 模型解释不了的那部分信息,也称为error(Residual sum of squares, RSS

R指的是模型可以解释的那部分信息所占的百分比,即MSS/TSS

如果R2越大,那该模型能解释的部分也就越多,模型当然就越佳。

上述的概念看上去枯燥,并不是那么有意思。

所以,小编接下来将会用图片呈现6个不同大小的R2,有助于了解不同R2到底“长”什么样,一定让你终身难忘~

首先载入所需R包:

# install.packages("correlation")
# install.packages("ggplot2")
# install.packages("patchwork")

library(correlation)   # 用于创建数据
library(ggplot2)
library(patchwork)

马上开始作图


第一张图:R2 = 0%

mydata_0 <- simulate_simpson(n = 500, r = 0, groups = 1)

p1 <- ggplot(mydata_0, aes(V1, V2)) + 
  geom_point(shape = 1, fill = "white", color = "firebrick1") + 
  geom_smooth(method = "lm", se = FALSE, color = "firebrick1") + 
  theme_minimal() + 
  annotate("text", x = 3, y = -3, label = "R-squared: 0%") + 
  labs(x = "", y = "") 
p1


第二张图: R2 = 10%

mydata_0.1 <- simulate_simpson(n = 500, r = sqrt(0.1), groups = 1)

p2 <- ggplot(mydata_0.1, aes(V1, V2)) + 
  geom_point(shape = 1, fill = "white", color = "deepskyblue3") + 
  geom_smooth(method = "lm", se = FALSE, color = "deepskyblue3") + 
  theme_minimal() + 
  annotate("text", x = 3, y = -3, label = "R-squared: 10%") + 
  labs(x = "", y = "") 
p2


第三张图: R2 = 50%

mydata_0.5 <- simulate_simpson(n = 500, r = sqrt(0.5), groups = 1)

p3 <- ggplot(mydata_0.5, aes(V1, V2)) + 
  geom_point(shape = 1, fill = "white", color = "goldenrod1") + 
  geom_smooth(method = "lm", se = FALSE, color = "goldenrod1") + 
  theme_minimal() + 
  annotate("text", x = 3, y = -3, label = "R-squared: 50%") + 
  labs(x = "", y = "") 
p3


第四张图: R2 = 70%

mydata_0.7 <- simulate_simpson(n = 500, r = sqrt(0.7), groups = 1)

p4 <- ggplot(mydata_0.7, aes(V1, V2)) + 
  geom_point(shape = 1, fill = "white", color = "mediumpurple1") + 
  geom_smooth(method = "lm", se = FALSE, color = "mediumpurple1") + 
  theme_minimal() + 
  annotate("text", x = 3, y = -3, label = "R-squared: 70%") + 
  labs(x = "", y = "") 
p4


第五张图: R2 = 90%

mydata_0.9 <- simulate_simpson(n = 500, r = sqrt(0.9), groups = 1)

p5 <- ggplot(mydata_0.9, aes(V1, V2)) + 
  geom_point(shape = 1, fill = "white", color = "orange3") + 
  geom_smooth(method = "lm", se = FALSE, color = "orange3") + 
  theme_minimal() + 
  annotate("text", x = 3, y = -3, label = "R-squared: 90%") + 
  labs(x = "", y = "") 
p5


第六张图: R2 = 100%

mydata_1 <- simulate_simpson(n = 500, r = sqrt(1), groups = 1)

p6 <- ggplot(mydata_1, aes(V1, V2)) + 
  geom_point(shape = 1, fill = "white", color = "palegreen4") + 
  geom_smooth(method = "lm", se = FALSE, color = "palegreen4") + 
  theme_minimal() + 
  annotate("text", x = 3, y = -3, label = "R-squared: 100%") + 
  labs(x = "", y = "") 
  
p6


最后,将6张图片合并,然后点击收藏

(p1 + p2 + p3) / (p4 + p5 + p6)

好啦,今天的内容就到这里。

如果有帮助,记得分享给需要的人

参考文献

[1]. The Elements of Statistical Learning

▌声明:本文由R语言和统计首发,如需转载请联系我们

▌编辑:June

▌我们的宗旨是:让R语言和统计变得简单!

往期精品(点击图片直达文字对应教程)

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值