Nat Methods | 任兵团队开发单细胞多组学数据分析工具SnapATAC2

加州大学圣地亚哥分校的研究团队开发了SnapATAC2,一款基于Rust和Python的高效数据分析工具,采用无矩阵拉普拉斯映射算法处理大规模单细胞数据,显著提升计算效率。SnapATAC2在多组学数据分析中表现出色,推动基因调控机制研究和新发现的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在当今的生物医学研究中,单细胞组学特别是单细胞表观遗传学技术的迅速发展,正逐步重塑我们对于生物体内复杂的基因调控机制的理解。这些技术的进步,为研究者提供了洞察细胞层面上基因表达和调控的新视角,揭示了细胞间的细微差异和复杂交互。但是,单细胞测序数据的海量增长给研究者带来了挑战,即如何有效处理和分析这些庞大、高维的数据集以提炼出有价值的生物学信息

传统数据分析方法在计算效率和捕获细胞多样性方面存在局限,难以满足当前研究的需求。比如,PCA虽高效,但只能捕捉线性关系,不足以全面反映细胞多样性。而基于深度学习的降维方法虽然在捕捉细胞多样性方面更为精确,但计算量巨大,不易应用于大规模数据集。 

针对这一问题,2024年1月8日,加州大学圣地亚哥分校的任兵教授团队在Nature Methods杂志发表了题为A fast, scalable and versatile tool for analysis of single-cell omics data的研究论文,开发了一款名为SnapATAC2的创新软件工具。

SnapATAC2是一个基于Rust和Python的高效数据分析包,采用先进的非线性降维算法,专为单细胞表观遗传学和多组学数据优化。该工具的核心创新在于采用的无矩阵拉普拉斯映射算法,能高效将庞大的单细胞组学数据集转化为易于管理和解析的低维形式,同时保留关键的细胞间关系和生物学特性

efe96b3e9facdcb61b4d8b0953a96e40.png

e88ad9483af747de8b834001f9d44a5b.pngSnapATAC2通过解决传统拉普拉斯映射算法在处理大规模单细胞数据时的内存和运算时间问题,显著提高了计算效率和内存管理能力。这一特点使得研究者能在保证数据质量和精确度的前提下,处理百万级甚至更多细胞的数据。在当前单细胞研究领域快速发展的背景下,这一能力显得尤为重要。 

SnapATAC2在速度、可扩展性和精确度方面超越现有方法,在包括ATAC-seq、RNA-seq、单细胞Hi-C和单细胞多组学数据集在内的多种单细胞组学数据集上表现出色。

此外,它提供了一个全面的分析框架,涵盖从原始数据处理到高级分析的各个阶段,包括预处理、降维/聚类、功能富集分析和多模态组学分析

其用户友好的设计和与单细胞分析生态系统中其他软件工具的良好兼容性,使其成为一个极具价值的工具,适用于广泛的生物学研究和临床应用。

b01ba0a290468a9908ee5a2e69fd2734.pngSnapATAC2将大规模、高维的单细胞组学数据有效转化为更易管理的低维表示,极大地推动了细胞层面上基因调控机制的研究,有助于开启新的生物学发现,并为未来单细胞多组学数据分析提供重要的技术支持,为生物医学研究开辟更广阔的可能性。

随着SnapATAC2的不断发展和优化,它预期将成为该领域的一款通用工具,为解决复杂生物学问题提供强有力的支持。 

本研究的第一作者是加州大学圣地亚哥分校的博士后张垲,现任西湖大学特聘研究员。作为通讯作者的任兵教授也来自加州大学圣地亚哥分校。 

张垲博士于2023年底加盟西湖大学。他长期致力于研究基因转录调控网络,并在Cell、Nature Methods、Nature Immunology、Nature Communications、Science Advances等知名学术期刊上以第一作者身份发表了多篇原创性研究论文。张垲的实验室专注于基因转录调控研究,运用计算生物学和机器学习等跨学科手段探索细胞分化、衰老及疾病的表观遗传学机制。实验室致力于开发创新的生物信息学和机器学习方法,系统构建转录调控的计算模型,并从基因调控角度解释非编码基因变异与疾病的关联。

张垲课题组积极招募表观遗传学、基因组学、生物信息学等方向的博士后,欢迎有志之士加入,共同探索生物学的深层次奥秘。 

原文链接:https://www.nature.com/articles/s41592-023-02139-9

高颜值免费 SCI 在线绘图(点击图片直达)

693bae3f8c188a7e99556bba187f8cbd.png

往期精品(点击图片直达文字对应教程)

f3a6e2a4cc010d9a61dfd193dc3a03ff.jpeg

1e824f5da11d493f53fa25daa861d06b.jpeg

1bf030daeab391bd17d2cdd811fb48fc.jpeg

c9c825c63e38053f7b0aea62b800c020.jpeg

ba4999f19b07d0a56fdbb9b21a8d2747.jpeg

8fb43d90ef33cdc664e892c37612e860.jpeg

09639dd8ad2141c2009de465890fb798.jpeg

a3a4416346b2fd3ebd648f46a5e879c1.jpeg

3a3cec89993ff60a4a3148363ccfed10.jpeg

83fe8f16f4ac7732fd3f71293c1931a2.jpeg

63aac508d3237c13b111481e899b7b1f.jpeg

45677d515c43464ab48fb8389ad9d4e8.jpeg

707dbc63f64ba45bbf1598ef508b0fbc.png

d093f067380fa035e7fcb794604e1613.png

48be8ed9e49b804f87b128c80940eb28.png

f21d320805114de87d69bea034d18618.png

ce592eb211875930da1d8b0c4f094488.jpeg

6a01f3dd52a6eab0922a1a5851eaf03e.jpeg

53e5dd2dd90c35b7e8b2461766227d8a.jpeg

fab9234e0878ae62de6c6b1c345fc459.jpeg

a94cad0eb0346359c46f522cfe02fd64.png

23202bf5d0501a3fd7e55dca4b211436.png

bcc755fb3d07c7715e55288f3d8db1a8.jpeg

d6c48f33f48fd4b980c1dafe11f13925.png

84c3a9d521daf1f59745368d11dbcc07.png

4dfdf04d21af09585843a4823e87057f.jpeg

ae0cc2d5306f24d9ae24d94f5837d81c.png

c8e46924aa6eca8bde8e02e656720e90.png

机器学习

9ee4b8421da1156f98997d67a2388b62.jpeg

a2831b994e2eb8c48fbeb51f95debbb9.jpeg

2a2d65f57d58441cccca4bc4c9820c35.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值