蜜汁问题?差异基因分析谁比谁有差别吗?

做差异基因分析时经常会遇到有老师纠结是样品组A比样品组B还是样品组B比样品组A。每次我都是很诧异,这有区别吗?

这是一个典型的DESeq2输出结果,我们怎么知道他计算的是trt/untrt还是untrt/trt?

ID    trt    untrt    baseMean    log2FoldChange    pvalue    padj
ENSG00000152583    1885.248    80.835    983.042    4.546    1.219e-91    2.149e-87
ENSG00000189221    4366.392    416.725    2391.559    3.387    9.955e-61    8.779e-57
ENSG00000179094    1353.139    161.359    757.249    3.065    2.435e-54    1.432e-50
ENSG00000116584    1450.876    3033.977    2242.427    -1.064    3.957e-49    1.745e-45

选2个基因做个例子就可以,ENSG00000152583log2FoldChange是正值,这个基因在trt样本组表达高;ENSG00000116584log2FoldChange是负值,这个基因在untrt样本组表达高;结果很明显了,是trt/untrtlog2FoldChange时表示基因在处理后调,为时表示基因在处理后调。

如果反过来,如下(给log2FoldChange列都乘以了-1),log2FoldChange时表示基因在处理后调,为负时表示基因在处理后调。

ID    trt    untrt    baseMean    log2FoldChange    pvalue    padj
ENSG00000152583    1885.248    80.835    983.042    -4.546    1.219e-91    2.149e-87
ENSG00000189221    4366.392    416.725    2391.559    -3.387    9.955e-61    8.779e-57
ENSG00000179094    1353.139    161.359    757.249    -3.065    2.435e-54    1.432e-50
ENSG00000116584    1450.876    3033.977    2242.427    1.064    3.957e-49    1.745e-45

其实就是描述方式不同。你可以在差异基因分析之前制定以哪个组做参考;如果没有指定或忘记了指定,结果正好又是反过来的,直接对log2FoldChange取反就可以。

另外还有一个问题,在之前几期课程也是常常被问起,log2 Fold change (有时简写为log2FC)是什么?初次不知道这个单词的含义没问题,如果不知道差异倍数就有点不好理解了。

首先看Fold change是什么?是差异倍数。怎么算的呢?正常计算是两个组的平均值的商,具体到上面的例子就是trt/untrt,如ENSG00000152583fold change1885.248/80.835=23.32217

为什么会取log2呢?我们看下下面这张图。所有算出的小于0Fold change转为了负数,大于0Fold change还是正数。且上调两倍可转为log2FC=1,下调两倍可转为log2FC=-1,转换后的值上下调存在对称关系,更有利于查看、筛选和绘图。如常用筛选标准abs(log2FC)>=1可以获得差异倍数2倍的上下调基因 (log(2)==1log(0.5)=-1)。

图片

fc=c(seq(0.25,1,length.out=4), seq(1,4,length.out=4))

data = data.frame(fc=fc, log2fc=abs(log2(fc)))

data$sign = ifelse(data$fc<1,'neg','pos')

data

# devtools::install_git("https://gitee.com/ct5869/ImageGP")
library(ImageGP)
sp_scatterplot(data, xvariable = "fc", yvariable = "log2fc", color_variable = "sign", manual_color_vector = c("red","blue"))

当然我们算出的log2FCDESeq2给出的不完全一致,是因为DESEq2做了进一步校正,但通常差别不大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信宝典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值